Recent Advances in Physics-Informed Machine Learning

AAAI 2024 Tutorial
Yiping Lu (NYU \& Northwestern), Grant M. Rotskoff (Stanford)

2024/2

Table of Contents
1 Why Physics-Informed Machine Learning

- Why Physics-Informed Machine Learning
- Formulation for Physics-Informed Machine Learning

D Differential Equation Solving Examples

- Theory Behind Physics-Informed Neural Network

Advanced PINN
$>$ Operator Learning
System Identification

- Summary

anai Scientific Paradigm

1 Why Physics-Informed Machine Learning

Scientific Paradigm

1 Why Physics-Informed Machine Learning
Physical Science $\ldots \ldots$. . theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science numerical simulation to understand complex real systems

Paul M. Dirac (1929)

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

Scientific Paradigm

1 Why Physics-Informed Machine Learning
Physical Science $\ldots \ldots$. \quad theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science $\ldots \ldots$ numerical simulation to understand complex real systems

Paul M. Dirac (1929)

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

- Accurate "constitutive equation"
- e.g. Newton's gravitational law \rightarrow Kepler's Law
- Efficient algorithms required
anai Challenges for Computational Physics
1 Why Physics-Informed Machine Learning
Traditional numerical methods approximate general functions using polynomials or piecewise polynomials, however...

anai
 Challenges for Computational Physics

1 Why Physics-Informed Machine Learning
Traditional numerical methods approximate general functions using polynomials or piecewise polynomials, however...

Curse of Dimensionality

The cost to represent a function is exponential in the dimensionality.

X

Physical systems require high-dimensional representations, e.g. dimension of quantum many-body problem \propto \# electrons

Challenges for Computational Physics

1 Why Physics-Informed Machine Learning

Inverse Problem/Optimal Design

Inverse problems/optimal design involve solving

$$
\min _{x} \mathcal{L}(F(x))
$$

where F is the forward process, such as a physics simulation, and \mathcal{L} is the objective aim to optimize. Even when a single iteration of this forward process is manageable, the overall task becomes computationally infeasible due to the iterative optimization process.

aaki
 Combating Curse of Dimensionality with ML

1 Why Physics-Informed Machine Learning

Combating these challenges using Machine (Deep) Learning!

ami Combating Curse of Dimensionality with ML
1 Why Physics-Informed Machine Learning
Physical Science
Numerical Science
nachine Learning
numerical simulation to understand complex real systems and build models that leverage empirical data to improve performance

Neural Networks provide tools to build flexible, universal, and efficient approximations for complex high-dimensional functions and functionals.

- In practice
- Imagenet (32x32 dimension)
- Alpha Go (19x19 dimension)
- Large Language Models $\left(d_{\text {model }} \sim \mathcal{O}\left(10^{3}\right)\right)$
- In theory
- Separation to Kernel (Linear) Methods
- Depth Separation

What is Phyiscs-Informed Machine Learning?
1 Why Physics-Informed Machine Learning

Physical Science -	theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science	numerical simulation to understand complex real systems
Machine Learning •...... Physics-Informed Machine	understand and build models that leverage empirical data to improve performance
Learning -	TODAY

Physics-informed Machine Learning study potential benefits for machine learning models by incorporating the physical prior such as

- Differential Equations: ODEs, PDEs, S(P)DEs
- Law of conservation, Symmetry ...

What is Phyiscs-Informed Machine Learning?

1 Why Physics-Informed Machine Learning

Physical Science	theoretical derivation combined with experimental verification to study natural phenomena
Numerical Science	numerical simulation to understand complex real systems
Machine Learning Physics-Informed Machine	understand and build models that leverage empirical data to improve performance
Learning	TODAY

Physics-informed Machine Learning study potential benefits for machine learning models by incorporating the physical prior such as

- Differential Equations: ODEs, PDEs, S(P)DEs
- Law of conservation, Symmetry ...

Applications include

- Quantum Many-body Problem
- Turbulence Models
- Modeling Rare Events

What are the Challenges in PIML?

1 Why Physics-Informed Machine Learning

Representation: Higher Dimension

Imagenet only 32×32 dimension, which can only simulate ~ 300 molecules Thus we need to understand

- function space that we can approximate in high-dimension.
- physical prior can help to represent functions more efficiently.
- approximation theory in infinite dimensional.

What are the Challenges in PIML?

1 Why Physics-Informed Machine Learning

Representation: Higher Dimension

Imagenet only 32×32 dimension, which can only simulate ~ 300 molecules Thus we need to understand

- function space that we can approximate in high-dimension.
- physical prior can help to represent functions more efficiently.
- approximation theory in infinite dimensional.

Generalization: Expensive Data Collection

Labeling data for scientific research is expensive, thus we need to consider the generalization theory for physics-informed machine learning

anai What is this tutorial about?
1 Why Physics-Informed Machine Learning

How to represent a physical solution and why it generalizes for

- Solving Differential Equations and Optimal Control
- Better Sampling for scientific problems

What is this tutorial about?
1 Why Physics-Informed Machine Learning

How to represent a physical solution and why it generalizes for

- Solving Differential Equations and Optimal Control
- Better Sampling for scientific problems
with applications in
- Inverse Problem
- Quantum Many-body Problem
- Rare Event (Transition Path) Sampling
- Large Deviations

Table of Contents

2 Formulation for Physics-Informed Machine Learning

- Why Physics-Informed Machine Learning
$>$ Formulation for Physics-Informed Machine Learning
> Differential Equation Solving
Examples
> Theory Behind Physics-Informed Neural Network
Advanced PINN
> Operator Learning
System Identification
> Summary

Formulation for Physics-Informed Machine Learning

2 Formulation for Physics-Informed Machine Learning

Physics-Informed Machine Learning

physics-informed machine learning as a structured risk minimization problem

$$
\begin{equation*}
\min _{f \in \mathcal{H}} \mathcal{L}(f, \mathcal{D})+\underbrace{\Omega(f)}_{\text {physical prior }} \tag{1}
\end{equation*}
$$

- Data \mathcal{D} : we could augment the dataset utilizing available physical prior like symmetry
- Model f : we could embed physical prior into the model design
- Regularization Ω : regularization terms using given physical priors like differential equations

Physics-Informed Machine Learning

physics-informed machine learning as a structured risk minimization problem

$$
\min _{f \in \mathcal{H}} \mathcal{L}(f, \mathcal{D})+\underbrace{\Omega(f)}_{\text {physical prior }}
$$

- Data \mathcal{D} : we could augment the dataset utilizing available physical prior like symmetry
- Model f : we could embed physical prior into the model design
- Regularization Ω : regularization terms using given physical priors like differential equations

Tasks that we are interested in

- Solving physical equations (First principle modeling)
- Operator Learning
- System Identification/Scientific Discovery

Partial Differential Equations (PDEs)

2 Formulation for Physics-Informed Machine Learning

Definition:PDEs

PDE is a relation of the following type, parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

with suitable boundary conditions

$$
\begin{equation*}
\mathcal{B}(u, \vec{x})=0, \quad \vec{x} \in \partial \Omega, \tag{2}
\end{equation*}
$$

Solving a PDE \rightarrow find a u function satisfying the governing equation. where

- $u=u\left(x_{1}, \ldots x_{n}\right)$ is a unknown function of n variables, i.e., $u: \mathbb{R}^{d} \mapsto \mathbb{R}$;
(\vec{u} can be a vector, i.e., $\vec{u} \in \mathbb{R}^{d}$, here, we assume it to be a scalar for simplicity)
- $u_{x_{i}}=\frac{\partial u}{\partial x_{i}}, u_{x_{i} x_{j}}=\frac{\partial^{2} u}{\partial x_{i} x_{j}}, \ldots$
- f is the governing equation.
${ }^{13 / 85} \mathcal{B}$ is the boundary condition.

Governing equation: Linear vs. Non-linear

2 Formulation for Physics-Informed Machine Learning

Linear PDE

A PDE is linear if and only if f is linear with respect to u and all its derivatives.

$$
\begin{equation*}
f\left(\vec{x} ; u ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}} \ldots ; \lambda\right)=0, \quad \vec{x} \in \Omega \tag{3}
\end{equation*}
$$

Governing equation: Linear vs. Non-linear

2 Formulation for Physics-Informed Machine Learning

Linear PDE

A PDE is linear if and only if f is linear with respect to u and all its derivatives.

$$
\begin{equation*}
f\left(\vec{x} ; u ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}} \ldots ; \lambda\right)=0, \quad \vec{x} \in \Omega \tag{3}
\end{equation*}
$$

Non-linear PDE

- Semilinear PDE where f is nonlinear only with respect to u but is linear with respect to all its derivatives;
- Quasi-linear PDE where f is linear with respect to the highest order derivatives of u;
- Fully nonlinear PDE where f is nonlinear with respect to the highest order derivatives of u.

Governing equation: order of PDEs

2 Formulation for Physics-Informed Machine Learning

Order of a PDE

The highest order of differentiation occurring in the equation is the order of the equation.

$$
\begin{equation*}
f\left(\vec{x} ; u ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}} \ldots ; \lambda\right)=0, \quad \vec{x} \in \Omega, \tag{4}
\end{equation*}
$$

Governing equation: order of PDEs

2 Formulation for Physics-Informed Machine Learning

Order of a PDE

The highest order of differentiation occurring in the equation is the order of the equation.

$$
\begin{equation*}
f\left(\vec{x} ; u ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}} \ldots ; \lambda\right)=0, \quad \vec{x} \in \Omega \tag{4}
\end{equation*}
$$

Second order PDEs

Most commonly used in engineering applications.

$$
a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+h u=f
$$

where a, \ldots, f are smooth (e.g. C^{2}) functions of x, y.

- Elliptic: $b^{2}-a c<0$, e.g., Laplace equation $u_{x x}+u_{y y}=0$
- Parabolic: $b^{2}-a c=0$, e.g., Diffusion equation $u_{t}-D u_{x x}=0$
- Hyperbolic: $b^{2}-a c>0$, e.g., Wave equation $u_{t t}-c^{2} u_{x x}=0$

Boundary conditions: Types of boundary value problems
2 Formulation for Physics-Informed Machine Learning

- Dirichlet: specifies the boundary value of $u:\left.u\right|_{\partial \Omega}=f$

Figure: Boundary value problem ${ }^{1}$

- Mixed: different location (x) have different boundary condition.

[^0]
Forward problem

2 Formulation for Physics-Informed Machine Learning

Forward problem: Given a fixed λ, solve for $u(x)$

Consider the following PDE parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

Traditionally, solved with finite difference method (FDM), finite element method (FEM),

Forward problem

2 Formulation for Physics-Informed Machine Learning

Forward problem: Given a fixed λ, solve for $u(x)$

Consider the following PDE parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

Traditionally, solved with finite difference method (FDM), finite element method (FEM),
Advantages: Accurate, Reliable
Challenges: Expensive and time consuming, Hard to incorporate in downstream applications

Forward problem: Given a fixed λ, solve for $u(x)$

Consider the following PDE parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

Traditionally, solved with finite difference method (FDM), finite element method (FEM), etc.

Advantages: Accurate, Reliable
Challenges: Expensive and time consuming, Hard to incorporate in downstream applications

Learning is suitable for:

- Surrogate modeling: find a cheap model to surrogate the PDE governed system, i.e., $u=f_{\theta}(x ; \lambda)$.
- Incorporating physical knowledge (PDE) information for downstream tasks.

Inverse problem: Given a set of observed $u(x)$, find λ

Consider the following PDE parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

- Identifying unknown parameters in PDEs/boundary/initial conditions
- Data driven (with partail physics knowledge) spatio-temporal modeling

Traditionally, formulated as a PDE constraint optimization problem, and solved with adjoint method.

Inverse problem: Given a set of observed $u(x)$, find λ

Consider the following PDE parameterized by $\lambda \in \mathbb{R}^{m}$:

$$
F\left(x_{1}, \ldots, x_{n}, \ldots ; u_{x_{1}}, \ldots, u_{x_{n}} ; u_{x_{1} x_{1}}, u_{x_{1} x_{2}}, \ldots ; \lambda\right)=0
$$

- Identifying unknown parameters in PDEs/boundary/initial conditions
- Data driven (with partail physics knowledge) spatio-temporal modeling

Traditionally, formulated as a PDE constraint optimization problem, and solved with adjoint method.

Learning is suitable for:

- Incorporating PDE information in inverse problems
- Surrogate modeling 1: find a cheap model to surrogate (inversion of) the PDE governed system, i.e., $u=f_{\theta}(x ; \lambda)$ (or $\lambda=f_{\theta^{\prime}}(u)$).

Table of Contents

3 Differential Equation Solving

- Why Physics-Informed Machine Learning
- Formulation for Physics-Informed Machine Learning
$>$ Differential Equation Solving
Examples
- Theory Behind Physics-Informed Neural Network

Advanced PINN
> Operator Learning
System Identification
> Summary

Physics-Informed Neural Network
3 Differential Equation Solving

Most of physics can be formulated as $A(u)=f$ where A is a differential operator

Physics-Informed Neural Network

3 Differential Equation Solving

Most of physics can be formulated as $A(u)=f$ where A is a differential operator

Physics-Informed Neural Network

3 Differential Equation Solving

Most of physics can be formulated as $A(u)=f$ where A is a differential operator

$$
\text { PINN solving } A(u)=f
$$

Suppose we observe $\left(x_{i}, f\left(x_{i}\right)\right)_{i=1}^{n}$, can we solve $A(u)=f$?
PINN minimizes the equation residual on observed data points, i.e.

$$
u^{*}=\arg \min _{u \in \mathcal{H}} \sum_{i=1}^{n}\left\|A(u)\left(x_{i}\right)-f\left(x_{i}\right)\right\|^{2}
$$

aaki
 Methods Beyond PINN

3 Differential Equation Solving
The core idea behind PINN is transforming solving $A(u)=f$ to a minimization problem $\min \|A(u)-f\|$. New transformation can bring new methods!

Methods Beyond PINN
3 Differential Equation Solving
The core idea behind PINN is transforming solving $A(u)=f$ to a minimization problem $\min \|A(u)-f\|$. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e. $A x=b \Longleftrightarrow \min x^{\top} A x-2 b x$ Not all PDEs admit a variational form.

Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018

Methods Beyond PINN
3 Differential Equation Solving
The core idea behind PINN is transforming solving $A(u)=f$ to a minimization problem $\min \|A(u)-f\|$. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e. $A x=b \Longleftrightarrow \min x^{\top} A x-2 b x$
Not all PDEs admit a variational form.
Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018
Weak Adversarial Network Solving equation $A(u)=f$ equalvalent to

$$
\min _{u} \max _{\|v\| \leq 1}\langle v, A(u)-f\rangle
$$

and change the constraint to a log penalization.
Zang Y, Bao G, Ye X, et al. Weak adversarial networks for high-dimensional partial differential equations. Journal of Computational Physics, 2020

Methods Beyond PINN
3 Differential Equation Solving
The core idea behind PINN is transforming solving $A(u)=f$ to a minimization problem $\min \|A(u)-f\|$. New transformation can bring new methods!

Deep Ritz Methods Using Variational form, i.e. $A x=b \Longleftrightarrow \min x^{\top} A x-2 b x$ Not all PDEs admit a variational form.

Yu B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Communications in Mathematics and Statistics, 2018
Weak Adversarial Network Solving equation $A(u)=f$ equalvalent to

$$
\min _{u} \max _{\|v\| \leq 1}\langle v, A(u)-f\rangle
$$

and change the constraint to a log penalization.
Zang Y, Bao G, Ye X, et al. Weak adversarial networks for high-dimensional partial differential equations. Journal of Computational Physics, 2020
Adversarial training L^{2} loss is not strong enough (for regualrity of PDE structure), we should use L^{∞} loss for some PDEs.

Wang C, et al. Is L^{2} Physics Informed Loss Always Suitable for Training Physics Informed Neural Network? Advances in Neural Information Processing Systems, 2022.

Not Just Neural Network

3 Differential Equation Solving
A neural network is not the only ansatz (a high bias list...)

- Gaussian Process

Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018. Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the National Academy of Sciences, 2021.

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.

Not Just Neural Network

3 Differential Equation Solving
A neural network is not the only ansatz (a high bias list...)

- Gaussian Process

Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018. Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the National Academy of Sciences, 2021.

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.

- Diffusion map

Lai R, Lu J. Point Cloud Discretization of Fokker-Planck Operators for Committor Functions. Multiscale Modeling \& Simulation, 2018.

Evans L, et al. Computing committors in collective variables via Mahalanobis diffusion maps. Applied and Computational Harmonic Analysis.

Not Just Neural Network
3 Differential Equation Solving
A neural network is not the only ansatz (a high bias list...)

- Gaussian Process

Raissi M, et al. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018. Yang S, Wong S W K, Kou S C. Inference of dynamic systems from noisy and sparse data via manifold-constrained Gaussian processes. Proceedings of the National Academy of Sciences, 2021.

Chen Y, Hosseini B, Owhadi H, et al. Solving and learning nonlinear PDEs with Gaussian processes. Journal of Computational Physics, 2021, 447: 110668.

- Diffusion map

Lai R, Lu J. Point Cloud Discretization of Fokker-Planck Operators for Committor Functions. Multiscale Modeling \& Simulation, 2018.

Evans L, et al. Computing committors in collective variables via Mahalanobis diffusion maps. Applied and Computational Harmonic Analysis.

- Tensor Network

Bachmayr M, Schneider R, Uschmajew A. Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations.

Foundations of Computational Mathematics 2016.

Richter L, Sallandt L, Nüsken N. Solving high-dimensional parabolic PDEs using the tensor train format International Conference on Machine Learning, 2021. Hur Y, Hoskins J G, Lindsey M, et al. Generative modeling via tensor train sketching. Applied and Computational Harmonic Analysis, 2023.

Data Acquisition and Importance Sampling
3 Differential Equation Solving
So far, we have only built loss functions. How should we sample data?

$$
\mathcal{I}(u)=\int_{\Omega} \mathcal{L}(\mathbf{x}, u) d \nu(\mathbf{x}),
$$

- Simplest case $d \nu(\boldsymbol{x})=d \boldsymbol{x}$
- Challenging case $d \nu(\boldsymbol{x})=e^{-U(\boldsymbol{x})} d \boldsymbol{x}$

Adaptive Importance Sampling

3 Differential Equation Solving

On-the-fly variance reduction via adaptive importance sampling

$$
\mathcal{L}(\mathbf{x}, f)=\frac{1}{2}|\nabla f(\mathbf{x})|^{2}, \quad d \nu(\boldsymbol{x})=e^{-\beta V(\mathbf{x})} d \boldsymbol{x} \quad(\beta>0)
$$

- Idea 1: Window sampling with instantaneous solution f with a bias
- Idea 2: Reweight the expectation with these importance sampled points $W_{l}(\boldsymbol{x}) \geq 0$ with $l=1, \ldots, L$ such that $\forall \boldsymbol{x} \in \Omega: \sum_{l=1}^{L} W_{l}(\boldsymbol{x})=1$,

$$
\mathbb{E}_{\nu} \phi=\sum_{l=1}^{L} \int_{\mathbb{R}^{d}} \phi(\mathbf{x}) W_{l}(\mathbf{x}) d \nu(\boldsymbol{x}) \equiv \sum_{l=1}^{L} w_{l} \mathbb{E}_{l} \phi
$$

GM Rotskoff, AR Mitchell, E Vanden-Eijnden Mathematical and Scientific Machine Learning, 757-780

a a a i Adaptive Importance Sampling

3 Differential Equation Solving

For any ϕ, define

$$
\begin{equation*}
\mathbb{E}_{l} \phi=\mathrm{Z}_{l}^{-1} \int_{\mathbb{R}^{d}} \phi(\boldsymbol{x}) W_{l}(\mathbf{x}) d \nu(\boldsymbol{x}) \quad \text { where } \quad Z_{l}=\int_{\mathbb{R}^{d}} W_{l}(\mathbf{x}) d \nu(\mathbf{x}) \tag{5}
\end{equation*}
$$

as well as the weights

$$
\begin{equation*}
w_{l}=\mathbb{E}_{\nu} W_{l} \tag{6}
\end{equation*}
$$

By choosing $\phi(\mathbf{x})=W_{l^{\prime}}(\mathbf{x})$ in this expression, we deduce that the weights satisfy the eigenvalue problem (Thiede et al 2016)

$$
\begin{equation*}
w_{l^{\prime}}=\sum_{l=1}^{L} w_{l} p_{l l^{\prime}}, \quad l^{\prime}=1, \ldots, L, \quad \text { subject to } \quad \sum_{l=1}^{L} w_{l}=1 \tag{7}
\end{equation*}
$$

where we defined

$$
\begin{equation*}
p_{l l^{\prime}}=\left\langle W_{l^{\prime}}\right\rangle_{l} . \tag{8}
\end{equation*}
$$

Adaptive Importance Sampling
3 Differential Equation Solving

Sample $Z_{l}^{-1} W_{l}(\boldsymbol{x}) d \nu(\boldsymbol{x})$ with MCMC biased by $-\log W_{l}(\mathbf{x})$ so that
$\mathbb{E}_{l} \phi \approx \frac{1}{n} \sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{i, l}\right), \quad \boldsymbol{x}_{i, l} \sim Z_{l}^{-1} W_{l}(\boldsymbol{x}) d \nu(\boldsymbol{x})$
This allows us to estimate $\mathbb{E}_{l} \phi$ in (7) as well as $p_{l l}$ in (8) - can solve eigenvalue problem! the weights w_{l}, and finally estimate $\mathbb{E}_{\nu} \phi$.

Adaptive Importance Sampling

3 Differential Equation Solving

Examples of High-Dimensional PDEs

3 Differential Equation Solving

Important Examples of high-dimensional problems

- Optimal Control: Hamilton-Jacobi Equation
- Dimension: State Space Dimension

ahai

 Examples of High-Dimensional PDEs

 Examples of High-Dimensional PDEs}

3 Differential Equation Solving

Important Examples of high-dimensional problems

- Optimal Control: Hamilton-Jacobi Equation
- Dimension: State Space Dimension
- Metastability: Backward Kolmogorov / Feynman-Kac
- Dimension: State Space Dimension

Examples of High-Dimensional PDEs

3 Differential Equation Solving

Important Examples of high-dimensional problems

- Optimal Control: Hamilton-Jacobi Equation
- Dimension: State Space Dimension
- Metastability: Backward Kolmogorov / Feynman-Kac
- Dimension: State Space Dimension
- Nonequilibrium Dynamics: Compute large deviation function
- Dimension: State Space Dimension

Examples of High-Dimensional PDEs
3 Differential Equation Solving

Important Examples of high-dimensional problems

- Optimal Control: Hamilton-Jacobi Equation
- Dimension: State Space Dimension
- Metastability: Backward Kolmogorov / Feynman-Kac
- Dimension: State Space Dimension
- Nonequilibrium Dynamics: Compute large deviation function
- Dimension: State Space Dimension
- Quantum Many-body problem: Eigenvalue Problems
- dimension \propto number of particles

Backward Kolmogorov Equation

3 Differential Equation Solving

Dynamics driven by an SDE,

$$
d \boldsymbol{X}_{t}=-\nabla V\left(\boldsymbol{X}_{t}\right) d t+\sqrt{2 \beta^{-1}} d \boldsymbol{W}_{t} .
$$

Various quantities satisfy Backward Kolmogorov Equation, including the committor probability:

$$
q(\boldsymbol{x}):=\mathbb{P}^{\boldsymbol{x}}\left(t_{B}<t_{A}\right)
$$

where $t_{A}=\inf \{t: \boldsymbol{x}(t) \in A\}$ and t_{B} is defined analogously. \quad g Rotskoff, AR Mitchell, E vanden-Eijnden. Active importance sampling for variational objectives dominated by rare events: Consequences for optimization and generalization. Mathematical and Scientific Machine Learning, 757-780, 2022.

a aki
 Variational Formulation

3 Differential Equation Solving
We want to solve the PDE,

$$
\begin{cases}(L q)(\boldsymbol{x})=0 & \text { for } \boldsymbol{x} \notin A \cup B \\ q(\boldsymbol{x})=0 & \text { for } \boldsymbol{x} \in A \\ q(\boldsymbol{x})=1 & \text { for } \boldsymbol{x} \in B .\end{cases}
$$

where $-L$ is the infinitesimal generator of the process defined by (??):

$$
L q=\nabla V \cdot \nabla q-\beta^{-1} \Delta q
$$

amai Variational Formulation

3 Differential Equation Solving
We want to solve the PDE,

$$
\begin{cases}(L q)(\boldsymbol{x})=0 & \text { for } \boldsymbol{x} \notin A \cup B \\ q(\boldsymbol{x})=0 & \text { for } \boldsymbol{x} \in A \\ q(\boldsymbol{x})=1 & \text { for } \boldsymbol{x} \in B\end{cases}
$$

where $-L$ is the infinitesimal generator of the process defined by (??):

$$
L q=\nabla V \cdot \nabla q-\beta^{-1} \Delta q
$$

Variational formulation:

$$
\mathcal{C}(q)=\int_{\mathbb{R}^{d}}|\nabla q(\mathbf{x})|^{2} d \nu(\mathbf{x}) \quad \text { with } \quad d \nu(\mathbf{x})=Z^{-1} e^{-\beta V(\mathbf{x})} d \boldsymbol{x}
$$

Example: low-dimensional metastable system
3 Differential Equation Solving

Example: 66-dimensional molecular systems

3 Differential Equation Solving

Formulation as a Feynman-Kac Equation

3 Differential Equation Solving

Molecular dynamics becomes Markovian on a lag-time τ.

$$
\begin{aligned}
\mathcal{T}_{A \cup B}^{\tau}[\phi](\boldsymbol{x}) & =\mathbb{E}_{\mathbf{x}} \phi\left(\boldsymbol{X}_{\tau_{*}}\right) \quad \text { where } \quad \tau_{*}=\min (\tau, T) \\
q(\boldsymbol{x}) & =0 \quad \boldsymbol{x} \in A \\
q(\boldsymbol{x}) & =1 \quad \boldsymbol{x} \in B
\end{aligned}
$$

Then, the committor satisfies:

$$
\left(\mathcal{T}_{A \cup B}^{\tau}[q]-\mathrm{Id}\right)(\mathbf{x})=0 \quad \boldsymbol{x} \in(A \cup B)^{\mathrm{c}}
$$

Strahan, J. et al. http://arxiv.org/abs/2208.01717 (2022).

Application of Feynman-Kac to Hurricane Lead Times 3 Differential Equation Solving

anai
 Nonequilibrium Dynamics

3 Differential Equation Solving
Aim to calculate the large deviation rate function for an observable, giving information about the asymptotic probability distribution.

Large deviations on path measures

$$
\mathbb{P}\left(A_{T} \in[a, a+d a]\right) \asymp e^{-T I(a)}
$$

where \mathbb{P} is the path measure associated with

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

and

$$
A_{T}=\int_{0}^{T} f\left(X_{t}\right) d t+\int_{0}^{T} g\left(X_{t}\right) \circ d X_{t}
$$

[^1]Nonequilibrium Dynamics
3 Differential Equation Solving

Control problem hidden in a rare events problem

$$
\begin{equation*}
d \boldsymbol{X}_{t}^{u}=u_{t}\left(\boldsymbol{X}_{t}^{u}\right) d t+\sigma d \boldsymbol{W}_{t} \tag{9}
\end{equation*}
$$

and then the SCGF can be estimated simply by reweighting the average

$$
\begin{gather*}
\psi(\lambda)=\lim _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{E}_{\boldsymbol{X}^{u}}\left(e^{\lambda T A_{T}} \frac{\mathrm{~d} \mathbb{P}\left[\boldsymbol{X}^{u}\right]}{\mathrm{d} \mathbb{P}_{u}\left[\boldsymbol{X}^{u}\right]}\right) \\
\psi(\lambda)=\lim _{T \rightarrow \infty} \frac{1}{T} \log \mathbb{E}\left[e^{\lambda T A_{T}}\right]=\sup _{u} \lim _{T \rightarrow \infty}\left\{\lambda \mathbb{E}_{u}\left[\boldsymbol{A}_{T}\right]-\frac{1}{T} \mathcal{D}_{K L}\left[\mathrm{~d} \mathbb{P}_{u} \| \mathrm{d} \mathbb{P}\right]\right\} . \tag{11}
\end{gather*}
$$

Nonequilibrium Dynamics: Realizing rare events

3 Differential Equation Solving

Current in the asymmetric exclusion process; comparison with tensor network approach.

\mathbb{A}^{-}
Nonequilibrium Dynamics: Realizing rare events
3 Differential Equation Solving
Active nonequilibrium matter, quantifying entropy production fluctuations.

Quantum Monte Carlo

3 Differential Equation Solving
Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo here means handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.
amai Quantum Monte Carlo
3 Differential Equation Solving
Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo here means handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

Variational Monte Carlo

We can recast the problem that finding the eigenvalue of \mathcal{H} as

$$
\min _{\theta} \mathcal{L}(\theta)=\frac{\left\langle\Psi_{\theta}, \mathcal{H} \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta}, \Psi_{\theta}\right\rangle}=\frac{\int_{x \in \mathcal{X}} \Psi_{\theta}^{*}(x) \cdot\left(\mathcal{H} \Psi_{\theta}\right)(x) d x}{\int_{x \in \mathcal{X}} \Psi_{\theta}^{*}(x) \cdot \Psi_{\theta}(x) d x}
$$

amai Quantum Monte Carlo
3 Differential Equation Solving
Quantum Monte Carlo aims to calculate the wave function (eigenfunction). Monte Carlo here means handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

Variational Monte Carlo

We can recast the problem that finding the eigenvalue of \mathcal{H} as

$$
\begin{align*}
\min _{\theta} \mathcal{L}(\theta) & =\frac{\left\langle\Psi_{\theta}, \mathcal{H} \Psi_{\theta}\right\rangle}{\left\langle\Psi_{\theta}, \Psi_{\theta}\right\rangle}=\frac{\int_{x \in \mathcal{X}} \Psi_{\theta}^{*}(x) \cdot\left(\mathcal{H} \Psi_{\theta}\right)(x) d x}{\int_{x \in \mathcal{X}} \Psi_{\theta}^{*}(x) \cdot \Psi_{\theta}(x) d x} \\
& =\int_{x \in \mathcal{X}} \underbrace{\frac{\Psi_{\theta}^{*}(x) \cdot \Psi_{\theta}(x)}{\int_{x \in \mathcal{X}} \Psi_{\theta}^{*}(x) \cdot \Psi_{\theta}(x) d x}}_{\text {probability } \pi_{\theta}(x)} \underbrace{\frac{\mathcal{H} \Psi_{\theta}(x)}{\Psi_{\theta}(x)}}_{\text {local energy } E_{\theta}(x)} d x=\mathbb{E}_{\pi_{\theta}(x)} E_{\theta}(x) \tag{12}
\end{align*}
$$

Variational Monte Carlo

3 Differential Equation Solving

Variational Monte Carlo

- Fisher-Rao Gradient

$$
\nabla_{\theta} \mathcal{L}_{\theta}=2 \mathbb{E}_{\pi_{\theta}(x)}[\underbrace{\left(E_{\theta}(x)-\mathbb{E}_{\pi_{\theta}(x)} E_{\theta}(x)\right)}_{\text {deviation of local energy }} \underbrace{\nabla_{\theta} \log \left|\Psi_{\theta}\right|}_{\text {score }}]
$$

Pfau D, Spencer J S, et al. Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, 2020, 2(3): 033429.

Variational Monte Carlo

3 Differential Equation Solving

Variational Monte Carlo

- Fisher-Rao Gradient

$$
\nabla_{\theta} \mathcal{L}_{\theta}=2 \mathbb{E}_{\pi_{\theta}(x)}[\underbrace{\left(E_{\theta}(x)-\mathbb{E}_{\pi_{\theta}(x)} E_{\theta}(x)\right)}_{\text {deviation of local energy }} \underbrace{\nabla_{\theta} \log \left|\Psi_{\theta}\right|}_{\text {score }}]
$$

Pfau D, Spencer J S, et al. Ab initio solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, 2O20, 2(3): 033429.

- Wasserstein Gradient

$$
\nabla_{\theta} \mathcal{L}_{\theta}=\mathbb{E}_{\theta} \nabla_{\theta}\langle-2 \underbrace{\nabla_{x} E_{\text {loc }}\left(x^{(i)}\right)}_{\text {gradient of local energy }}, \nabla_{x} \log \pi\left(x^{(i)}, \theta\right)\rangle
$$

[^2]Why VMC is hard?
3 Differential Equation Solving

- Design of ani-symmetric Neural Network $\Psi\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \Psi\left(x_{1}, \cdots, x_{n}\right)$ (Slater) Determinant is slow and exists an exponential approximation lower bound.

Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.
Pang T, Yan S, Lin M. $O\left(N^{2}\right)$ Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.

R
 Why VMC is hard?

3 Differential Equation Solving

- Design of ani-symmetric Neural Network $\Psi\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \Psi\left(x_{1}, \cdots, x_{n}\right)$ (Slater) Determinant is slow and exists an exponential approximation lower bound.

Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.
Pang T, Yan S, Lin M. $O\left(N^{2}\right)$ Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.

- The calculation of Δ is slow in high dimension

$$
\begin{equation*}
\mathcal{H}:=-\frac{1}{2} \sum_{i} \Delta_{i}+\sum_{i>j} \frac{1}{\left|r_{i}-r_{j}\right|}-\sum_{i I} \frac{Z_{I}}{\left|r_{i}-R_{I}\right|}+\sum_{I>J} \frac{Z_{I} Z_{J}}{\left|R_{I}-R_{J}\right|} \tag{13}
\end{equation*}
$$

Li R, Ye H, Jiang D, et al. Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo. arXiv preprint arXiv:2307.08214, 2023.

Why VMC is hard?
3 Differential Equation Solving

- Design of ani-symmetric Neural Network $\Psi\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) \Psi\left(x_{1}, \cdots, x_{n}\right)$ (Slater) Determinant is slow and exists an exponential approximation lower bound.

Zweig A, Bruna J. Towards Antisymmetric Neural Ansatz Separation. arXiv preprint arXiv:2208.03264, 2022.
Pang T, Yan S, Lin M. $O\left(N^{2}\right)$ Universal Antisymmetry in Fermionic Neural Networks. arXiv preprint arXiv:2205.13205, 2022.

- The calculation of Δ is slow in high dimension

$$
\begin{equation*}
\mathcal{H}:=-\frac{1}{2} \sum_{i} \Delta_{i}+\sum_{i>j} \frac{1}{\left|r_{i}-r_{j}\right|}-\sum_{i I} \frac{Z_{I}}{\left|r_{i}-R_{I}\right|}+\sum_{I>J} \frac{Z_{I} Z_{J}}{\left|R_{I}-R_{J}\right|} \tag{13}
\end{equation*}
$$

Li R, Ye H, Jiang D, et al. Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo. arXiv preprint arXiv:2307.08214, 2023.

- Non-convex landscape and overfitting

Beyond Physics

3 Differential Equation Solving

PINN-like idea can be used beyond physics. Generally speaking, you can always fusion modeling with learning with PINN, for example

- Auction Design

Dütting P, Feng Z, Narasimhan H, et al. Optimal auctions through deep learning International Conference on Machine Learning.
Peri N, Curry M, Dooley S, et al. Preferencenet: Encoding human preferences in auction design with deep learning. Advances in Neural Information Processing Systems 2021.

Beyond Physics

3 Differential Equation Solving

PINN-like idea can be used beyond physics. Generally speaking, you can always fusion modeling with learning with PINN, for example

- Auction Design

Dütting P, Feng Z, Narasimhan H, et al. Optimal auctions through deep learning International Conference on Machine Learning.
Peri N, Curry M, Dooley S, et al. Preferencenet: Encoding human preferences in auction design with deep learning. Advances in Neural Information Processing Systems 2021.

- Neural Rendering

Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM.

Sitzmann V, Martel J, et al. Implicit neural representations with periodic activation functions. Advances in neural information processing systems 2020 .

Table of Contents
4 Theory Behind Physics-Informed Neural Network

- Why Physics-Informed Machine Learning
- Formulation for Physics-informed Machine Learning
> Differential Equation Solving Examples
- Theory Behind Physics-Informed Neural Network Advanced PINN
- Operator Learning

System Identification
> Summary

aaki
 Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$?

aaki
 Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$? Is PINN Optimal?

aaki
 Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$? Is PINN Optimal? Are All Losses Created Equal?

amai Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$?
Is PINN Optimal? Are All Losses Created Equal?
Recast Solving PDE as a Statistical Problem
Example: Solving $\Delta u=f$
anai Statistics of Physics-Informed Neural Network
4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$?
Is PINN Optimal? Are All Losses Created Equal?
Recast Solving PDE as a Statistical Problem
Example: Solving $\Delta u=f$

- Hypothesis Space: the solution u in (Sobolev, Besov, Barron space...)

0^{2-2}
 Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$?
Is PINN Optimal? Are All Losses Created Equal?

Recast Solving PDE as a Statistical Problem

Example: Solving $\Delta u=f$

- Hypothesis Space: the solution u in (Sobolev, Besov, Barron space...)
- Observation Data:

$$
\left(u\left(x_{i}\right), f\left(x_{i}\right)=\Delta u\left(x_{i}\right)+\text { noise }\right)_{i=1}^{n}
$$

amai Statistics of Physics-Informed Neural Network
4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$?
Is PINN Optimal? Are All Losses Created Equal?

Recast Solving PDE as a Statistical Problem

Example: Solving $\Delta u=f$

- Hypothesis Space: the solution u in (Sobolev, Besov, Barron space...)
- Observation Data:

$$
\left(u\left(x_{i}\right), f\left(x_{i}\right)=\Delta u\left(x_{i}\right)+\text { noise }\right)_{i=1}^{n}
$$

Now we recast a solving PDE problem as a non-parametric estimation problem, so that we can

- Using Fano, ... methods to know the lower bound
- Using empirical process, ... methods to build the upper bound

Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$? Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound

If A is a t-th order linear differential operator, then any Estimator H using $\left(X_{i}, f_{i}\right)_{i=1}^{n}$ can't do better than

$$
\inf _{H} \sup _{u \in C^{\alpha}(\Omega)} \mathbb{E}\left\|H\left(\left\{X_{i}, f_{i}\right\}_{i=1, \cdots, n}\right)-u^{*}\right\|_{W_{s}^{2}} \gtrsim n^{-\frac{2 \alpha-2 s}{2 \alpha-2 t+\alpha}},
$$

- Solving a PDE equal to reconstructing a function with gradient information inf means best estimator and sup means the hardest problem

Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$? Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound

If A is a t-th order linear differential operator, then any Estimator H using $\left(X_{i}, f_{i}\right)_{i=1}^{n}$ can't do better than

$$
\inf _{H} \sup _{u \in C^{\alpha}(\Omega)} \mathbb{E}\left\|H\left(\left\{X_{i}, f_{i}\right\}_{i=1, \cdots, n}\right)-u^{*}\right\|_{W_{s}^{2}} \gtrsim n^{-\frac{2 \alpha-2 s}{2 \alpha-2 t+\alpha}},
$$

- Solving a PDE equal to reconstructing a function with gradient information inf means best estimator and sup means the hardest problem

Take Home Message PINN is Optimal!

Statistics of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
What is the optimal sample complexity for learning with prior information $A(u)=f$? Is PINN Optimal? Are All Losses Created Equal?

Information Theortical Lower Bound

If A is a t-th order linear differential operator, then any Estimator H using $\left(X_{i}, f_{i}\right)_{i=1}^{n}$ can't do better than

$$
\inf _{H} \sup _{u \in C^{\alpha}(\Omega)} \mathbb{E}\left\|H\left(\left\{X_{i}, f_{i}\right\}_{i=1, \cdots, n}\right)-u^{*}\right\|_{W_{s}^{2}} \gtrsim n^{-\frac{2 \alpha-2 s}{2 \alpha-2 t+\alpha}},
$$

- Solving a PDE equal to reconstructing a function with gradient information inf means best estimator and sup means the hardest problem

Take Home Message PINN is Optimal! Not every consistent loss function is optimal! We need case by case studying!

4 Theory Behind Physics-Informed Neural Network
Why Deep Ritz Method is sub-optimal?

amai A Fourier Basis View

4 Theory Behind Physics-Informed Neural Network
Why Deep Ritz Method is sub-optimal? Solving a simple PDE $\Delta u=f$ using Fourier Basis. Using Deep Ritz Methods, the objective function is

$$
\min \int \frac{1}{2}\|\nabla f(x)\|^{2}-u(x) f(x) d x
$$

amai A Fourier Basis View
4 Theory Behind Physics-Informed Neural Network
Why Deep Ritz Method is sub-optimal? Solving a simple PDE $\Delta u=f$ using Fourier Basis. Using Deep Ritz Methods, the objective function is

$$
\min \int \frac{1}{2}\|\nabla f(x)\|^{2}-u(x) f(x) d x
$$

- Estimator 1: First learn f, the god solves the equation
computationally intractable

Estimator 1

First Estimate f then solve $u, f_{z}=\frac{1}{n} \sum f\left(x_{i}\right) \phi_{z}\left(x_{i}\right)$, then $u=\sum \frac{1}{\|z\|^{2}} f_{z} \phi_{z}(x)$

amai A Fourier Basis View

4 Theory Behind Physics-Informed Neural Network
Why Deep Ritz Method is sub-optimal? Solving a simple PDE $\Delta u=f$ using Fourier Basis. Using Deep Ritz Methods, the objective function is

$$
\min \int \frac{1}{2}\|\nabla f(x)\|^{2}-u(x) f(x) d x
$$

- Estimator 1: First learn f, the god solves the equation
computationally intractable

Estimator 1

First Estimate f then solve $u, f_{z}=\frac{1}{n} \sum f\left(x_{i}\right) \phi_{z}\left(x_{i}\right)$, then $u=\sum \frac{1}{\|z\|^{2}} f_{z} \phi_{z}(x)$

- Estimator 2: Deep ritz methods

Estimator 2

Plug $u=\sum u_{z} \phi_{z}(x)$ into the Deep Ritz Objecive function

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{z} u_{z} \nabla \phi_{z}\left(x_{i}\right)\right)^{2}+\sum_{z} u_{z} \phi_{z}\left(x_{i}\right) f\left(x_{i}\right)
$$

amai A Fourier Basis View

4 Theory Behind Physics-Informed Neural Network

- Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$
\begin{equation*}
\mathrm{u}_{1, z}=\underbrace{\operatorname{diag}\left(\|z\|_{2}^{2}\right)_{\|z\|_{\infty \leq \mathrm{Z}}}^{-1}}_{\text {MatrixA }} f_{z} \tag{14}
\end{equation*}
$$

- Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

amai A Fourier Basis View

4 Theory Behind Physics-Informed Neural Network

- Estimator 1: The Fourier coefficient of the solution of Estimator 1 is

$$
\begin{equation*}
\mathrm{u}_{1, z}=\underbrace{\operatorname{diag}\left(\|z\|_{2}^{2}\right)_{\|z\|_{\infty \leq \mathrm{Z}}}^{-1}}_{\text {MatrixA }} f_{z} \tag{14}
\end{equation*}
$$

- Estimator 2: The Fourier coefficient of the solution of Estimator 2 is

$$
\begin{equation*}
\mathrm{u}_{2, z}=\underbrace{\left(\frac{1}{n} \sum_{i=1}^{n} \nabla \phi_{i}\left(x_{i}\right) \nabla \phi_{j}\left(x_{i}\right)\right)_{\|i\|_{\infty} \leq Z,\|j\|_{\infty} \leq Z}^{-1}}_{\text {Empirical Gram Matrix } \hat{A}} f_{Z} \tag{15}
\end{equation*}
$$

Suboptimality of Deep Ritz Methods

introduce a new variance $\operatorname{Var}\left(\|\nabla u(x)\|^{2}-\Delta u(x) u(x)\right)$, but neglectable in high-dimension

[^3]anai Approximation Theory of Physics-Informed Neural Network
4 Theory Behind Physics-Informed Neural Network

Question

Let's consider the simplest PDE $\Delta u=f$. If f can be represented by a NN, can u be represented by a NN?

Approximation Theory of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

Question

Let's consider the simplest PDE $\Delta u=f$. If f can be represented by a NN, can u be represented by a NN?
The answer is YES. This helps us to understand the implicit bias of NN to solve PDEs.

- Parametric Complexity Bounds for Approximating PDEs with Neural Networks Tanya Marwah, Zachary C. Lipton, Andrej Risteski Neural Information Processing Systems (NeurIPS), 2021
- Neural Network approximations of PDEs Beyond Linearity: A Representational Perspective Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski International Conference on Machine Learning (ICML), 2023
- Deep Equilibrium Based Neural Operators for Steady-State PDEs Tanya Marwah*, Ashwini Pokle*, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski Neural Information Processing Systems (NeurIPS), 2023

Approximation Theory of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network

Question

Let's consider the simplest PDE $\Delta u=f$. If f can be represented by a NN, can u be represented by a NN?
The answer is YES. This helps us to understand the implicit bias of NN to solve PDEs.

- Parametric Complexity Bounds for Approximating PDEs with Neural Networks Tanya Marwah, Zachary C. Lipton, Andrej Risteski Neural Information Processing Systems (NeurIPS), 2021
- Neural Network approximations of PDEs Beyond Linearity: A Representational Perspective Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski International Conference on Machine Learning (ICML), 2023
- Deep Equilibrium Based Neural Operators for Steady-State PDEs Tanya Marwah*, Ashwini Pokle*, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu, Andrej Risteski Neural Information Processing Systems (NeurIPS), 2023

Reason: Neural Network can perform (preconditioned) gradient flow.

- Similar to the recent line of that transformer can perform gradient descent for in-context learning.
- Precondition is essential for infinite-dimensional due to infinite condition number!

Optimization of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
Will different loss function affects optimization speed?
1).Physics-Informed $\int(\Delta u(x)-f(x))^{2} d x$
2).Deep Ritz $\int\|\Delta u(x)\|^{2}-2 u(x) f(x) d x$

Optimization of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
Will different loss function affects optimization speed?
1).Physics-Informed $\int(\Delta u(x)-f(x))^{2} d x \quad$ 2).Deep Ritz $\int\|\Delta u(x)\|^{2}-2 u(x) f(x) d x$

Traditional Thoughts 1) is much harder, for it involves condition number of Δ^{2} while 2) only involves Δ

Optimization of Physics-Informed Neural Network

4 Theory Behind Physics-Informed Neural Network
Will different loss function affects optimization speed?
1). Physics-Informed $\int(\Delta u(x)-f(x))^{2} d x \quad$ 2).Deep Ritz $\int\|\Delta u(x)\|^{2}-2 u(x) f(x) d x$

Traditional Thoughts 1) is much harder, for it involves condition number of Δ^{2} while 2) only involves Δ
Machine Learning is a Kernelized gradient flow. Physics equations can precondition machine learning!

Lu Y, Blanchet J, Ying L. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. Advances in Neural Information Processing

Systems, 2022, 35: 33233-33247.

Optimization of Physics-Informed Neural Network
4 Theory Behind Physics-Informed Neural Network
Will different loss function affects optimization speed?
1).Physics-Informed $\int(\Delta u(x)-f(x))^{2} d x$
2).Deep Ritz $\int\|\Delta u(x)\|^{2}-2 u(x) f(x) d x$

Traditional Thoughts 1) is much harder, for it involves condition number of Δ^{2} while 2) only involves Δ
Machine Learning is a Kernelized gradient flow. Physics equations can precondition machine learning!

Lu Y, Blanchet J, Ying L. Sobolev acceleration and statistical optimality for learning elliptic equations via gradient descent. Advances in Neural Information Processing

Systems, 2022, 35: 33233-33247.
Using Sobolev norm $\left(\int\left\|\nabla^{k}(\Delta u(x)-f(x))\right\|^{2} d x\right)$ as loss function can further accelerates training accelerates optimization

- Yu J, Lu L, Meng X, et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, 2022.
- Sobolev training for physics-informed neural networks, with J. W. Jang, W. J. Han, and H. J. Hwang, 2023

amai Sobolev Training vs L2 training

4 Theory Behind Physics-Informed Neural Network

Sobolev Training vs L2 training for function fitting.

a ami Sobolev Training vs L2 training

4 Theory Behind Physics-Informed Neural Network

Sobolev Training vs L2 training for solving heat equation.

Computation of PINN in High Dimension

4 Theory Behind Physics-Informed Neural Network
Computing and even back prop $\Delta u=\underbrace{u_{x_{1} x_{1}}+\cdots+u_{x_{d} x_{d}}}_{d \text { times computation }}$ is hard when d is high!

$x^{\prime 2}$
 Computation of PINN in High Dimension

4 Theory Behind Physics-Informed Neural Network
Computing and even back prop $\Delta u=\underbrace{u_{x_{1} x_{1}}+\cdots+u_{x_{d} x_{d}}}_{d \text { times computation }}$ is hard when d is high!
Idea 1: Stein's Lemma: $u=\mathbb{E}_{\delta \sim \mathcal{N}\left(0, \sigma^{2} I\right)} f(x+\delta)$, then $\nabla_{x} u=\mathbb{E}_{\delta \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\frac{\delta}{\sigma^{2}} f(x+\delta)\right]$

- Relates to Feyman-Kac
- Finite Difference with random direction!

He D, Li S, Shi W, et al. Learning physics-informed neural networks without stacked back-propagation International Conference on Artificial Intelligence and Statistics.
amai Computation of PINN in High Dimension
4 Theory Behind Physics-Informed Neural Network
Computing and even back prop $\Delta u=\underbrace{u_{x_{1} x_{1}}+\cdots+u_{x_{d} x_{d}}}_{d \text { times computation }}$ is hard when d is high!
Idea 1: Stein's Lemma: $u=\mathbb{E}_{\delta \sim \mathcal{N}\left(0, \sigma^{2} I\right)} f(x+\delta)$, then $\nabla_{x} u=\mathbb{E}_{\delta \sim \mathcal{N}\left(0, \sigma^{2} I\right)}\left[\frac{\delta}{\sigma^{2}} f(x+\delta)\right]$

- Relates to Feyman-Kac
- Finite Difference with random direction!

He D, Li S, Shi W, et al. Learning physics-informed neural networks without stacked back-propagation International Conference on Artificial Intelligence and Statistics.
Idea 2: Sketching: random select dimension to descent

$$
\Delta u(x)=\mathbb{E}_{i} \frac{d^{2}}{d x_{i}^{2}} u(x)
$$

Hu Z, Shukla K, Karniadakis G E, et al. Tackling the curse of dimensionality with physics-informed neural networks. arXiv preprint arXiv:2307.12306, 2023.

这
 Failure Modes of PINN

4 Theory Behind Physics-Informed Neural Network
Consider solving equation $\frac{\partial u}{\partial t}+\beta \frac{\partial u}{\partial x}=0$ whose solution is $u(x, t)=u(x-\beta t, 0)$ using PINN

Propagation Failure: some collocation points start converging to trivial solutions before the correct solution from initial/boundary points is able to reach them

aaki
 Failure Modes of PINN

4 Theory Behind Physics-Informed Neural Network
Consider solving equation $\frac{\partial u}{\partial t}+\beta \frac{\partial u}{\partial x}=0$ whose solution is $u(x, t)=u(x-\beta t, 0)$ using PINN

Propagation Failure: some collocation points start converging to trivial solutions before the correct solution from initial/boundary points is able to reach them

- Curriculum training using easier β Krishnapriyan A , etal. Characterizing possible failure modes in physiss-ifformed neural networks. Neurips, 2021.
- Respecting causality wang s , et al. Respecting causality is all you need for training physics-informed neural networks. arXiv:2203.07404.
- Adaptive sampling Gao z, Yan L, zhou T. Failure-informed adaptive sampling for PINNs. SIAM Journal on Scientific Computing, 2023.

Table of Contents
5 Operator Learning

- Why Physics-Informed Machine Learning
$>$ Formulation for Physics-informed Machine Learning
> Differential Equation Solving Examples
- Theory Behind Physics-Informed Neural Network

Advanced PINN

- Operator Learning

System Identification
$>$ Summary

Motivation of Operator Learning: Meta-PINN?

5 Operator Learning

Parametric PDE

We consider PDEs parametrized by coefficent $a(x)$:

$$
-\nabla \cdot(a(x) \nabla u(x))=f(x), x \in D
$$

Motivation of Operator Learning: Meta-PINN?

5 Operator Learning

Parametric PDE

We consider PDEs parametrized by coefficent $a(x)$:

$$
-\nabla \cdot(a(x) \nabla u(x))=f(x), x \in D .
$$

What if we have a dataset of $a(x)$

Operator Learning

5 Operator Learning

amai Operator Learning
5 Operator Learning

Idea: Directly learn the mapping between functions.
Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193, 2019.

Kovachki N, Li Z, Liu B, et al. Neural operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481, 2021.

5 Operator Learning

aaki
 Operator Learning: Discretization-Invariant

5 Operator Learning
Idea: Directly learn the mapping between functions.

Vocabulary:
Man, woman, boy,
girl, prince,
princess, queen,
king, monarch

Neural Operators: Learning in the Function space

5 Operator Learning
Idea: Learning in the function space
discretization convergence

Operator Learning: Framework

5 Operator Learning
Operator learning aims to build a parametric approximation $\mathcal{G}_{\theta}\left(\theta \in \mathbb{R}^{p}\right)$ to approximate a (non-linear) operator $\mathcal{G}: \underbrace{\mathcal{A}}_{\text {Banach space }} \rightarrow \underbrace{\mathcal{U}}_{\text {Banach space }}$

- Banach space $\mathcal{A}:\left\{a: D \rightarrow \mathbb{R}^{d_{a}}\right\}$ and $\mathcal{U}:\left\{a: D \rightarrow \mathbb{R}^{d_{a}}\right\}$ are all function space
- Idea1:

- Linear Encoding from a function to $\mathbb{R}^{d_{1}}$ code
- Transform a $\mathbb{R}^{d_{1}}$ code to a $\mathbb{R}^{d_{2}}$ code
- Linear Decoding from $\mathbb{R}^{d_{2}}$ code to a function
anai Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space
amai Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space

Linear Transform

- Linear Encoding: $u \rightarrow\left\{\int_{x} u(x) f_{i}(x) d x\right\}_{i=1}^{n}$
aami Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space

Linear Transform

- Linear Encoding: $u \rightarrow\left\{\int_{x} u(x) f_{i}(x) d x\right\}_{i=1}^{n}$
- a vector-input vector-output neural network
amai Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space

Linear Transform

- Linear Encoding: $u \rightarrow\left\{\int_{x} u(x) f_{i}(x) d x\right\}_{i=1}^{n}$
- a vector-input vector-output neural network
- Linear Decoding: $\left\{\beta_{k}\right\}_{k=1}^{p} \rightarrow \sum_{k=1}^{p} \beta_{k} \underbrace{\tau_{k}}$ function

Universal approximation theorem of Chen \& Chen (1995) states that DeepONets can approximate continuous operators

[^4]
Operator Learning: Framework

5 Operator Learning
Operator learning aims to build a parametric approximation $\mathcal{G}_{\theta}\left(\theta \in \mathbb{R}^{p}\right)$ to approximate a (non-linear) operator \mathcal{G} :

- Banach sapce $\mathcal{A}:\left\{a: D \rightarrow \mathbb{R}^{d_{a}}\right\}$ and $\mathcal{U}:\left\{a: D \rightarrow \mathbb{R}^{d_{a}}\right\}$ are all function space
- Idea1:

- Linear Encoding from a function to $\mathbb{R}^{d_{1}}$ code
- Transform a $\mathbb{R}^{d_{1}}$ code to a $\mathbb{R}^{d_{2}}$ code
- Linear Decoding from $\mathbb{R}^{d_{2}}$ code to a function
- Idea2: Directly feature extraction in the function space!
anai Operator Learning

5 Operator Learning

We need to generalize operations in neural networks to function space

Convolution

- $v_{l+1}(s)=\sigma(W_{l} v_{l}(s)+\underbrace{\int_{D} k_{l}(s, z) v_{l}(z) d z}_{\text {convolution }}+b_{l} s(s))$

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar A., "Neural Operator: Learning Maps Between Function
Spaces" , JMLR, 2021. doi:10.48550
amai Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space

Convolution

- $v_{l+1}(s)=\sigma(W_{l} v_{l}(s)+\underbrace{\int_{D} k_{l}(s, z) v_{l}(z) d z}_{\text {convolution }}+b_{l} s(s))$

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anandkumar A., "Neural Operator: Learning Maps Between Function
Spaces" , JMLR, 2021. doi:10.48550

- Fast implementation: Fourier Neural Operator

> FFT->multiplication->iFFT->nonlinear activation

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar A., "Fourier Neural Operator for Parametric Partial Differential Equations" , ICLR, 2021.
amai Operator Learning
5 Operator Learning
We need to generalize operations in neural networks to function space

Attention

Original Attention: Fourier Transform $\int_{\Omega}\left(\xi_{q}\left(x_{i}\right) \phi_{k}(\xi)\right) v_{j}(\xi) d \xi$

Computation scales $O\left(n^{2} k\right)$: n number of pixels, k number of "Basis"
Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, 2021, 34: 24924-24940.

aabi
 Operator Learning

5 Operator Learning
We need to generalize operations in neural networks to function space

Attention

Galerkin Attention: $z_{j}\left(x_{i}\right)=\sum_{j=1}^{d}\left(\int_{\Omega} k_{l}(\xi) v_{j}(\xi) d \xi\right) q_{l}\left(x_{i}\right)$

Computation scales $O\left(n k^{2}\right)$: n number of pixels, k number of "Basis"
Cao S. Choose a transformer: Fourier or Galerkin. Advances in neural information processing systems, 2021, 34: 24924-24940.

Linear Operator Learning

5 Operator Learning

Convergence Rate

- de Hoop M V, Nelsen N H, et al. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification
- BoulleN, Townsend A. Learning elliptic partial differential equations with randomized linear algebra. Foundations of Computational Mathematics

Linear Operator Learning

5 Operator Learning

Convergence Rate

- de Hoop M V, Nelsen N H, et al. Convergence rates for learning linear operators from noisy data. SIAM/ASA Journal on Uncertainty Quantification
- BoulleN, Townsend A. Learning elliptic partial differential equations with randomized linear algebra. Foundations of Computational Mathematics

Improved Rates by Multi-level Methods

- Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.
- BoulléN, Kim S, et al. Learning Green's functions associated with time-dependent partial differential equations. The Journal of Machine Learning Research.
- Schäfer F, Owhadi H. Sparse recovery of elliptic solvers from matrix-vector products. arXiv preprint arXiv:2110.05351, 2021.
- Jin J, Lu Y, Blanchet J, et al. Minimax Optimal Kernel Operator Learning via Multilevel Training, International Conference on Learning Representations. 2022.

maxi
 Why Linear: Koopman Operator

5 Operator Learning
The Koopman operator is a linear but infinite-dimensional operator that describes the evolution of observables in a finite dimensional dynamical system.

How the distribution of state space evolves through the dynamic!
(Mathematically: adjoint of generator)

Hardness of learning in infinite dimensions: Linear Case

5 Operator Learning

A linear operator is an "infinite-dimensional" matrix,

Hardness of learning in infinite dimensions: Linear Case
5 Operator Learning
A linear operator is an "infinite-dimensional" matrix, operator learning equals to reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.

Multilevel algorithms are essential to achieve minimax optimality, which differs from finite-dimensional matrix reconstruction!

Hardness of learning in infinite dimensions: Linear Case
5 Operator Learning
A linear operator is an "infinite-dimensional" matrix, operator learning equals to reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.

\longleftarrow Evert Row is a Linear Regression
Multilevel algorithms are essential to achieve minimax optimality, which differs from finite-dimensional matrix reconstruction!

Hardness of learning in infinite dimensions: Linear Case
5 Operator Learning
A linear operator is an "infinite-dimensional" matrix, operator learning equals to reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.

Optimal regularization differs for each row!

Hardness of learning in infinite dimensions: Linear Case
5 Operator Learning
A linear operator is an "infinite-dimensional" matrix, operator learning equals to reconstruct a matrix using matrix-vector multiplication.

Lin L, Lu J, Ying L. Fast construction of hierarchical matrix representation from matrix-vector multiplication. Journal of Computational Physics, 2011.

Optimal regularization differs for each row!

Multilevel algorithms are essential to achieve minimax optimality, which differs from finite-dimensional matrix reconstruction!
amai Hardness of learning in infinite dimensions
5 Operator Learning
Neural operators can approximate any continuous operator. chen \& Chen 1995, Nikola Kovachki et. al. 2021

Hardness of learning in infinite dimensions
5 Operator Learning
Neural operators can approximate any continuous operator. chen \& Chen 1995, Nikola Kovachki et. al. 2021

Curse of Dimensionality

The cost to represent a function is exponential to the dimensionality.

Smoothness only is not enough to break the Curse of dimensionality!

Break Curse of Dimensionality: Non-linear Case

5 Operator Learning

Different from finite dimension, Smoothness only is not enough to break the Curse of Dimensionty! Additional structure is needed, such as

- Holomorphic Mappings

Schwab, C. \& Zech, J. (2019), Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ,
Analysis and Applications

- PDE Oerators

Lanthaler S, Mishra S, Karniadakis G E. Error estimates for deeponets: A deep learning framework in infinite dimensions. Transactions of Mathematics and
Its Applications, 2022, 6(1): tnac001.

Break Curse of Dimensionality: Non-linear Case
5 Operator Learning

Different from finite dimension, Smoothness only is not enough to break the Curse of Dimensionty! Additional structure is needed, such as

- Holomorphic Mappings

Schwab, C. \& Zech, J. (2019), Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in UQ,
Analysis and Applications

- PDE Oerators

Lanthaler S, Mishra S, Karniadakis G E. Error estimates for deeponets: A deep learning framework in infinite dimensions. Transactions of Mathematics and
Its Applications, 2022, 6(1): tnacoo1.

Open Question

What is the general structure that makes operator possible in infinite dimension?

Break Curse of Dimensionality: PDE Operators

5 Operator Learning

Different structure that is used to break the curse of dimensionality includes

- Darcy Flow, Navier-Stokes via PCA-Net [1]
- Hamilton-Jacobi Equation [2]

Break Curse of Dimensionality: PDE Operators
5 Operator Learning
Different structure that is used to break the curse of dimensionality includes

- Darcy Flow, Navier-Stokes via PCA-Net [1]
- Hamilton-Jacobi Equation [2]

Idea Neural Network can approximate known "algorithms"

- Approximate convergent schemes such as spectral methdos
- Approximate the Method of Characteristics

Similar to approximation theory for PINN
[1] Lanthaler S. Operator learning with PCA-Net: upper and lower complexity bounds. arXiv preprint arXiv:2303.16317, 2023.
[2] Lanthaler S, Stuart A M. The curse of dimensionality in operator learning. arXiv preprint arXiv:2306.15924, 2023.

Break Curse of Dimensionality: PDE Operators

5 Operator Learning

Neural Operator adaptive to certain structure is ensential!

5 Operator Learning
Approximate partial derivative using finite difference can be represent as convolution.

Approximate partial derivative using finite difference can be represent as convolution.

How to approximate $\partial_{x x} f(x, y)$?

Question

How can we map convolution kernels with finite difference operators?

Approximate partial derivative using finite difference can be represent as convolution.

Question

How can we map convolution kernels with finite difference operators?

Approximate partial derivative using finite difference can be represent as convolution.

How to approximate $\partial_{x x} f(x, y)$?

$$
\partial_{x x} f(x, y) \approx \frac{f(x-\Delta x, y)+f(x+\Delta x, y)-2 f(x, y)}{\Delta x^{2}}
$$

equivalent to conv kernel $[-1,2,1]$

Question

How can we map convolution kernels with finite difference operators?

5 Operator Learning

What's the property of a partial derivative?
Differentiation can because low order polynomial to zero!

What's the property of a partial derivative?
Differentiation can because low order polynomial to zero!

Orders of sum rules

For a filter \boldsymbol{q}, we say \boldsymbol{q} to have sum rules of order $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$, where $\alpha \in \mathbb{Z}_{+}^{2}$, provided that

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}^{2}} k^{\beta} q[k]=0 \tag{16}
\end{equation*}
$$

for all $\beta \in \mathbb{Z}_{+}^{2}$ with $|\beta|<|\alpha|$ and for all $\beta \in \mathbb{Z}_{+}^{2}$ with $|\beta|=|\alpha|$ but $\beta \neq \alpha$. If (16) holds for all $\beta \in \mathbb{Z}_{+}^{2}$ with $|\beta|<K$ except for $\beta \neq \beta_{0}$ with certain $\beta_{0} \in \mathbb{Z}_{+}^{2}$ and $\left|\beta_{0}\right|=J<K$, then we say q to have total sum rules of order $K \backslash\{J+1\}$.

Linear constraints on convolutional weights!

PDE-Net

5 Operator Learning

PDE-Net is a neural network but can also represent a PDE with form

$$
u_{t}=f\left(u, u_{x}, u_{x x}, \cdots\right)
$$

- Linear constrained convolution kernel to approximate spatial derivatives
- 1x1 convolution kernel to approximate function f Lin M, Chen Q, ran S. Networki in network. arxiv preprint arXiv:1312.4400

aaki
 Boundary Condition

5 Operator Learning
Internal nodes

Neumann/Robin BCs

Periodic BCs

\square Conv filter

Sparse Identification of Nonlinear Dynamics (SIDy)

5 Operator Learning
Build a big dictionary

$$
\Theta(U)=\underbrace{\left[1, U, U^{2}, \cdots, \sin (U), \cdots, U_{x}, U_{x}^{2}, \cdots, U_{x x}, U_{x x}^{2}, \cdots\right]}_{\text {possible dictionary }}
$$

and then preform sparse regression methods

Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan . "Discovering governing equations from data by sparse identification of nonlinear dynamical systems". Proceedings of the National Academy of Sciences.

Chen Z, Liu Y, Sun H. Physics-informed learning of governing equations from scarce data. Nature communications.

Data-Driven Discovery of New Physics
5 Operator Learning

aaki
 Data-Driven Discovery of New Physics

5 Operator Learning
Intuitively speaking, the balls in our data set (whiffle balls, perhaps, excluded) are similar enough objects that the equations governing their trajectories should include similar terms. Group Sparsity!

Ball	First drop	Second drop
Golf Ball	$\ddot{x}=-9.34+0.05 v$	$\ddot{x}=-9.44-0.03 v$
Baseball	$\ddot{x}=-8.51+0.14 v$	$\ddot{x}=-7.56+0.14 v$
Tennis Ball	$\ddot{x}=-9.08-0.13 v$	$\ddot{x}=-8.64-0.12 v$
Volleyball	$\ddot{\ddot{ }=-8.11-0.08 v}$	$\ddot{x}=-9.64-0.23 v$
Blue Basketball	$\ddot{x}=-6.71+0.15 v$	$\ddot{x}=-7.50+0.07 v$
Green Basketball	$\ddot{x}=-7.36+0.10 v$	$\ddot{x}=-8.05+0.02 v$
Whiffle Ball 1	$\ddot{x}=-8.24-0.34 v$	$\ddot{x}=-9.44-0.43 v$
Whiffle Ball 2	$\ddot{x}=-9.81-0.56 v$	$\ddot{x}=-9.79-0.48 v$
Yellow Whiffle Ball	$\ddot{x}=-8.50-0.47 v$	$\ddot{x}=-8.45-0.46 v$
Orange Whiffle Ball	$\ddot{x}=-7.83-0.35 v$	$\ddot{x}=-8.03-0.42 v$

Data-Driven Discovery of New Physics

5 Operator Learning

The Reynolds number for a ball with diameter D and velocity v will then be

$$
\operatorname{Re}=0.6667 D v \times 10^{5}
$$

Ball	Radius (m)	Mass (kg)	Density (kg/m)	$v_{\max }(\mathbf{m} / \mathbf{s})$	Max Re
Golf Ball	0.021963	0.045359	1022.066427	26.63	1.75×10^{5}
Baseball	0.035412	0.141747	762.037525	26.61	2.83×10^{5}
Tennis Ball	0.033025	0.056699	375.813253	21.95	2.18×10^{5}
Volleyball	0.105^{*}	NA	NA	22.09	6.96×10^{5}
Blue Basketball	0.119366	0.510291	71.628378	24.80	8.88×10^{5}
Green Basketball	0.116581	0.453592	68.342914	25.06	8.77×10^{5}
Whiffle Ball 1	0.036287	0.028349	141.641937	16.91	1.84×10^{5}
Whiffle Ball 2	0.036287	0.028349	141.641937	16.35	1.78×10^{5}
Yellow Whiffle Ball	0.046155	0.042524	103.250857	15.30	2.12×10^{5}
Orange Whiffle Ball	0.046155	0.042524	103.250857	15.77	2.18×10^{5}

Complex secondary physical mechanisms, like unsteady fluid drag forces, can obscure the underlying law of gravitation, leading to an erroneous model.

Latent SINDY

5 Operator Learning

Bakarji J, Champion K, Nathan Kutz J, et al. Discovering governing equations from partial measurements with deep delay autoencoders. Proceedings of the Royal Society A, 2O23, 479(2276): 20230422.

Different Levels of Interpretability
5 Operator Learning

Fully white box, limited capacity

Gray box neural network
Physics knowledge as network structure, differentiable physics that integrate
FEM/FDM solvers

Fully black box, universal approximator

Table of Contents

6 Summary

- Why Physics-Informed Machine Learning
- Formulation for Physics-Informed Machine Learning
> Differential Equation Solving
Examples
- Theory Behind Physics-Informed Neural Network

Advanced PINN
> Operator Learning
System Identification

- Summary

$\mathscr{A N}_{4}$

Summary

6 Summary
In this tutorial, we introduced empirical and theoretical challenges to cooperate physical information $A u=f$ to machine learning systems

Recent Advances in Physics-Informed Machine Learning

Thank you for listening! Any questions?

[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Boundary_value_problem

[^1]: J Yan, GM Rotskoff. Physics-informed graph neural networks enhance scalability of variational nonequilibrium optimal control. Journal of Chemical Physics 157 (7)

[^2]: Neklyudov K, Nys J, Thiede L, et al. Wasserstein quantum monte carlo: A novel approach for solving the quantum many-body schrödinger equation. Neurips 2023.

[^3]: Lu, Yiping, et al. "Machine learning for elliptic pdes: Fast rate generalization bound, neural scaling law and minimax optimality."

[^4]: 6alk

