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Design challenges in MCMC

Many problems in the physical sciences require 
sampling high-dimensional, multimodal distributions

Exponential timescales for transitions between 
known states, nontrivial to design  

MCMC to accelerate

Specialized samplers are not transferrable between 
physically similar systems

ρ*(x) = Z−1
* e−U*(x)

ρ*(x)π(x, y) = ρ*(y)π(y, x)

Target distribution:

Typically design transition kernel 
 with detailed balance:
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Generative models as MCMC samplers

2011: Andrieu, C.; Jasra, A.; Doucet, A.; Moral, P. D. On Nonlinear Markov Chain Monte 
Carlo. Bernoulli 2011, 17 (3), 987–1014.  

2016: Wang, D.; Liu, Q. Learning to Draw Samples: With Application to Amortized MLE 
for Generative Adversarial Learning. arXiv:1611.01722 [cs, stat] 2016.  

2017: Song, J.; Zhao, S.; Ermon, S. A-Nice-Mc: Adversarial Training for MCMC. In 
Advances in neural information processing systems 2017; Vol. 30. 

2019: Albergo, M. S.; Kanwar, G.; Shanahan, P. E. Flow-Based Generative Models for 
Markov Chain Monte Carlo in Lattice Field Theory. Phys. Rev. D 2019, 100 (3), 034515.

Requires invertible architecture  
and (potentially) large amounts of data

Sample independently from learned distribution? 

Many works have considered this paradigm, e.g.,

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

4

Goodfellow et al., 2014.
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Normalizing flows; composable, invertible

 

Tabak, E. G.; Vanden-Eijnden, E. Density Estimation by Dual Ascent of the Log-Likelihood. Communications in Mathematical Sciences 2010, 8 (1), 217–233.  
Rezende, D.; Mohamed, S. Variational Inference with Normalizing Flows. In International Conference on Machine Learning; PMLR, 2015; pp 1530–1538. 

T : ℝd → ℝd x = T(z)

̂ρ(x) = ρB(T−1(x)) | det ∇T−1(x) |

xk = Tk ∘ … ∘ T0(z)

Diffeomorphism (flow)

In practice, architectures are built  
from compositions of many such maps:

“Base” measure — typically a Gaussian

acc(x, y) = min [1,
̂ρ(x)ρ*(y)

ρ*(x) ̂ρ(y) ]

MCMC procedure is straightforward:

1. Generate a new configuration, accept/reject via MH

2. Optional intercalate with local sampling (e.g., MALA)

̂π(x, y) = ∫Ω
π(x, z)πT(z, y)dz

πT(x, y) = acc(x, y) ̂ρ(y) + (1 − r(x))δ(x − y)

We use “realNVP” Local transition kernel
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DKL(ρ*∥ ̂ρ) = C* − ∫Ω
log ̂ρ(x)ρ*(x)dx

 5

Concurrent training and sampling

Use the “forward” KL as a figure of merit: ℒn[T] = −
1
n

n

∑
i=1

log ̂ρ(xi(k))

=
1
n

n

∑
i=1

(UB(T−1(xi(k)) − log det |∇T−1(xi(k)) |)

Initialize with at least one walker 
in each metastable basin 

Nonlocal jumps between basins 
key for acceleration

“Self-training” uses the reverse KL

DKL( ̂ρ∥ρ*) = ∫Ω
log

̂ρ(x)
ρ*(x)

̂ρ(x)dx

Mode collapse

Sampling with an “imperfect” map   not optimalT
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Continuous limit and convergence

∂tgt = − ∇U* ⋅ ∇gt + Δgt

+α∫Ω
min( ̂gt(x), ̂gt(y))(gt(y) − gt(x)) ρ*(y)dy

gt = ρt /ρ* ̂gt = ̂ρt /ρ*

∀t ≥ t0 : Dt ≤
Dt0

(Gt0(eα(t−t0) − 1) + 1)
2

Dt = ∫Ω

ρ2
t

ρ*
dx − 1 = ∫Ω

g2
t ρ*dx − 1 ≥ 0.

Pearson   divergenceχ2

Convergence, provided initial distribution not “too far”:

Gt = inf
x

gt(x)



Grant M. Rotskoff Stanford University

 7

Base measure for rough paths
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Nonequilibrium Path Sampling
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ℙ*(x[0,tmax]) ∝ exp [−
β
4 ∫
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| ·xt − b(xt) |2 dt]

Brownian bridge base measure:

ℙB(x[0,tmax]) ∝ exp [−
β
4 ∫

tmax

0
| ·xt |

2 dt]

Karhunen-Loève shows locality and smoothness
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Bayesian sampling

ρ*(θ) = ρ(θ |D)ρo(θ) = Z−1
* L(θ)ρo(θ)

Z* = ∫Θ
L(θ)ρo(θ)dθ Z* = 𝔼ρB [

L(T(θB))ρo(T(θB))
̂ρ(T(θB)) ]
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• Sampling and training NFs to augment MCMC yields non-local transport 

• Flexible, generalizable, even in high-dimensions 

• Training is non-trivial, but local dynamics helps explore basins 

• Not a method for discovery (at least, not yet) 

• Good convergence properties, provided an appropriate base measure 

• Much work to be done to adapt base measures in cases where no a priori data exists

Conclusions
 10
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