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The expressive power of neural networks



What is the origin of deep learning’s empirical success? 4

curse of dimensionality? [AH18]
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The story from statistical learning theory 5

The right number of parameters is determined by the “right” model.

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

networks and kernel machines trained to interpolate the training
data obtain near-optimal test results even when the training data
are corrupted with high levels of noise (5, 6).

The main finding of this work is a pattern in how perfor-
mance on unseen data depends on model capacity and the
mechanism underlying its emergence. This dependence, empir-
ically witnessed with important model classes including neural
networks and a range of datasets, is summarized in the “double-
descent” risk curve shown in Fig. 1B. The curve subsumes the
classical U-shaped risk curve from Fig. 1A by extending it beyond
the point of interpolation.

When function class capacity is below the “interpolation
threshold,” learned predictors exhibit the classical U-shaped
curve from Fig. 1A. (In this paper, function class capacity is iden-
tified with the number of parameters needed to specify a function
within the class.) The bottom of the U is achieved at the sweet
spot which balances the fit to the training data and the suscepti-
bility to overfitting: To the left of the sweet spot, predictors are
underfitted, and immediately to the right, predictors are overfit-
ted. When we increase the function class capacity high enough
(e.g., by increasing the number of features or the size of the neu-
ral network architecture), the learned predictors achieve (near)
perfect fits to the training data—i.e., interpolation. Although
the learned predictors obtained at the interpolation threshold
typically have high risk, we show that increasing the function
class capacity beyond this point leads to decreasing risk, typically
going below the risk achieved at the sweet spot in the “classical”
regime.

All of the learned predictors to the right of the interpolation
threshold fit the training data perfectly and have zero empiri-
cal risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer
is that the capacity of the function class does not necessarily
reflect how well the predictor matches the inductive bias appro-
priate for the problem at hand. For the learning problems we
consider (a range of real-world datasets as well as synthetic
data), the inductive bias that seems appropriate is the regular-
ity or smoothness of a function as measured by a certain function
space norm. Choosing the smoothest function that perfectly fits
observed data is a form of Occam’s razor: The simplest expla-
nation compatible with the observations should be preferred (cf.
refs. 7 and 8). By considering larger function classes, which con-
tain more candidate predictors compatible with the data, we
are able to find interpolating functions that have smaller norm
and are thus “simpler.” Thus, increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins
theory (7, 9, 10), where a larger function class H may permit
the discovery of a classifier with a larger margin. While the
margins theory can be used to study classification, it does not

apply to regression and also does not predict the second descent
beyond the interpolation threshold. Recently, there has been an
emerging recognition that certain interpolating predictors (not
based on ERM) can indeed be provably statistically optimal or
near optimal (11, 12), which is compatible with our empirical
observations in the interpolating regime.

In the remainder of this article, we discuss empirical evidence
for the double-descent curve and the mechanism for its emer-
gence and conclude with some final observations and parting
thoughts.

Neural Networks
In this section, we discuss the double-descent risk curve in the
context of neural networks.

Random Fourier Features. We first consider a popular class of non-
linear parametric models called random Fourier features (RFF)
(13), which can be viewed as a class of 2-layer neural networks
with fixed weights in the first layer. The RFF model family
HN with N (complex-valued) parameters consists of functions
h : Rd

!C of the form

h(x )=
NX

k=1

ak�(x ; vk ) where �(x ; v):=e
p
�1hvk ,xi,

and the vectors v1, . . . , vN are sampled independently from the
standard normal distribution in Rd . (We consider HN as a class
of real-valued functions with 2N real-valued parameters by tak-
ing real and imaginary parts separately.) Note that HN is a
randomized function class, but as N !1, the function class
becomes a closer and closer approximation to the reproducing
kernel Hilbert space (RKHS) corresponding to the Gaussian
kernel, denoted by H1. While it is possible to directly use
H1 [e.g., as is done with kernel machines (14)], the random
classes HN are computationally attractive to use when the sam-
ple size n is large but the number of parameters N is small
compared with n .

Our learning procedure using HN is as follows. Given data
(x1, y1), . . . , (xn , yn) from Rd

⇥R, we find the predictor hn,N 2

HN via ERM with squared loss. That is, we minimize the empiri-
cal risk objective 1

n

Pn
i=1(h(xi)� yi)

2 over all functions h 2HN .
When the minimizer is not unique (as is always the case when
N >n), we choose the minimizer whose coefficients (a1, . . . , aN )
have the minimum `2 norm. This choice of norm is intended as
an approximation to the RKHS norm khk

H1
, which is generally

difficult to compute for arbitrary functions in HN . For prob-
lems with multiple outputs (e.g., multiclass classification), we use
functions with vector-valued outputs and the sum of the squared
losses for each output.

15850 | www.pnas.org/cgi/doi/10.1073/pnas.1903070116 Belkin et al.
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Evidence for “double descent” 6

Emerging theoretical picture challenges this paradigm

A B

Fig. 1. Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias–variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-
capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.
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Evidence for “double descent” 7

Neural networks are far from the interpolation regime
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In Fig. 2, we show the test risk of the predictors learned using
HN on a subset of the popular dataset of handwritten digits
called MNIST. Fig. 2 also shows the `2 norm of the function
coefficients, as well as the training risk. We see that for small
values of N , the test risk shows the classical U-shaped curve con-
sistent with the bias–variance trade-off, with a peak occurring
at the interpolation threshold N =n . Some statistical analyses
of RFF suggest choosing N /

p
n log n to obtain good test risk

guarantees (15).
The interpolation regime connected with modern practice is

shown to the right of the interpolation threshold, with N �n .
The model class that achieves interpolation with fewest param-
eters (N =n random features) yields the least accurate predic-
tor. (In fact, it has no predictive ability for classification.) But
as the number of features increases beyond n , the accuracy
improves dramatically, exceeding that of the predictor corre-
sponding to the bottom of the U-shaped curve. The plot also
shows that the predictor hn,1 obtained from H1 (the ker-
nel machine) outperforms the predictors from HN for any
finite N .

What structural mechanisms account for the double-descent
shape? When the number of features is much smaller than the
sample size, N ⌧n , classical statistical arguments imply that the
training risk is close to the test risk. Thus, for small N , adding
more features yields improvements in both the training and the
test risks. However, as the number of features approaches n
(the interpolation threshold), features not present or only weakly
present in the data are forced to fit the training data nearly
perfectly. This results in classical overfitting as predicted by the
bias–variance trade-off and prominently manifested at the peak
of the curve, where the fit becomes exact.

To the right of the interpolation threshold, all function classes
are rich enough to achieve zero training risk. For the classes HN

that we consider, there is no guarantee that the most regular,
smallest norm predictor consistent with training data (namely
hn,1, which is in H1) is contained in the class HN for any finite
N . But increasing N allows us to construct progressively better

approximations to that smallest norm function. Thus, we expect
to have learned predictors with largest norm at the interpolation
threshold and for the norm of hn,N to decrease monotonically
as N increases, thus explaining the second descent segment of
the curve. This is what we observe in Fig. 2, and indeed hn,1
has better accuracy than all hn,N for any finite N . Favoring small
norm interpolating predictors turns out to be a powerful induc-
tive bias on MNIST and other real and synthetic datasets (6). For
noiseless data, we make this claim mathematically precise in SI
Appendix.

Additional empirical evidence for the same double-descent
behavior using other datasets is presented in SI Appendix. For
instance, we demonstrate double descent for rectified linear unit
(ReLU) random feature models, a class of ReLU neural net-
works with a setting similar to that of RFF. We also describe
a simple synthetic model, which can be regarded as a 1D version
of the RFF model, where we observe the same double-descent
behavior.

Neural Networks and Backpropagation. In general multilayer neu-
ral networks (beyond RFF or ReLU random feature models),
a learning algorithm will tune all of the weights to fit the train-
ing data, typically using versions of stochastic gradient descent
(SGD), with backpropagation to compute partial derivatives.
This flexibility increases the representational power of neural
networks, but also makes ERM generally more difficult to imple-
ment. Nevertheless, as shown in Fig. 3, we observe that increasing
the number of parameters in fully connected 2-layer neural net-
works leads to a risk curve qualitatively similar to that observed
with RFF models. That the test risk improves beyond the inter-
polation threshold is compatible with the conjectured “small
norm” inductive biases of the common training algorithms for
neural networks (16, 17). We note that this transition from
under- to overparameterized regimes for neural networks was
also previously observed by refs. 18–21. In particular, ref. 21
draws a connection to the physical phenomenon of “jamming”
in particle systems.

Fig. 2. Double-descent risk curve for the RFF model on MNIST. Shown are test risks (log scale), coefficient `2 norms (log scale), and training risks of the RFF
model predictors hn,N learned on a subset of MNIST (n = 104, 10 classes). The interpolation threshold is achieved at N = 104.

Belkin et al. PNAS | August 6, 2019 | vol. 116 | no. 32 | 15851
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Overparameterization is not harmful empirically. [BHMM19]
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Neural networks with many parameters 8

Focus on the simplest model, for analytical purposes: single hidden layer
neural network

𝑓 (𝑛) (𝒙; 𝜽1, . . . , 𝜽𝑛) =
1
𝑛

𝑛∑
𝑖=1

𝜑(𝒙, 𝜽 𝑖); R𝑘 → R (1)

▶ Parameters: {𝜽 𝑖} ∈ 𝐷⊗𝑛.

▶ Nonlinear unit: 𝜑 e.g., ReLU
▶ Proper scaling is important! (cf. Jacot’s lecture)
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The function spaces associated with neural networks 9

Neural net with 𝑛 finite,

𝑓 (𝑛) (𝒙; 𝜽1, . . . , 𝜽𝑛) =
1
𝑛

𝑛∑
𝑖=1

𝜑(𝒙, 𝜽 𝑖) (2)

Replace discrete parameters with a discrete distribution

𝜇 (𝑛) (𝑑𝜽) = 1
𝑛

𝑛∑
𝑖=1

𝛿𝜽𝑖 (𝑑𝜽) (3)

Exact rewriting:

𝑓 (𝑛) (𝒙) =
∫
𝐷
𝜑(𝒙, 𝜽)𝜇 (𝑛) (𝑑𝜽) (4)

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



F1 : the “mean-field” regime 10

Homogeneous units:
𝜑(𝒙, 𝜽) = 𝑐𝜑(𝒙, 𝒛)

𝜽 = (𝑐, 𝒛) ∈ 𝐷 ≡ R × �̂�

𝑓 (𝑛) (𝒙) =
∫
�̂�
𝜑(𝒙, 𝒛)𝛾 (𝑛) (𝒛) (5)

𝛾 (𝑛) is a signed Radon measure.

F1(𝜑) =
{
𝑔

���� 𝑔 =
∫
�̂�
𝜑(·, 𝒛)𝛾(𝑑𝒛), 𝛾 s.t. |𝛾 |𝑇𝑉 ≤ ∞

}
(6)

[Bac17]
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F2 : the “kernel” regime 11

This is the random kernel limit, closely related to the Neural Tangent
Kernel.
▶ “Features” are sampled randomly
▶ Linear coefficients are optimized (can be done via regression)

F2(𝜑) =
{
𝑔

���� 𝑔 =
∫
�̂�
𝜑(·, 𝜽)𝜇(𝑑𝜽), 𝑑𝜇(𝜽) = 𝜌(𝜽)𝑑𝜏(𝜽)

}
(7)

𝜌 square-integrable

supp 𝜏 = �̂�

NB: F2 is a RKHS with 𝑘 (𝒙, 𝒚) =
∫
𝐷
𝜑(𝒙, 𝜽)𝜑(𝒚, 𝜽)𝑑𝜏

[Bac17, CB18a]
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Universal approximation theorems 12

Question: How expressive are neural networks?

Approximation problem: given function 𝑓 : R𝑘 → R. Goal: learn 𝑓

Theorem ([Bar93, Cyb89])
Let 𝜑 be a continuous, non-polynomial function. Assume 𝑓 ∈ 𝐿2(Ω, 𝜈) and
𝜖 > 0. Then there exists a signed Radon measure 𝛾∗ ∈ M(𝐷) such that

𝑓∗ =
∫

𝜑(𝒙, 𝒛)𝛾∗(𝒛) (8)

and
‖ 𝑓 − 𝑓 ∗‖2,𝜈 ≤ 𝜖 (9)
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What these theorems do not say 13

𝑓∗ =
∫

𝜑(𝒙, 𝒛)𝛾∗(𝒛) (10)

▶ Can we train to find 𝑓∗?
▶ Does training converge (in any limit)?
▶ How does the error scale with 𝑛? (Barron discusses in special case)

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Questions?
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Optimizing neural networks



The “standard” set-up 16

Data
{(𝒙𝑖 , 𝑦𝑖)}𝑃𝑖=1

𝑖𝑖𝑑∼ 𝜈

Learning on the mean-squared loss:

ℓ(𝜽1, . . . , 𝜽𝑛) = 1
2E𝑦,𝒙 |𝑦 − 𝑓𝑛 (𝒙; 𝜽1, . . . , 𝜽𝑛) |2 , (11)

expand the quadratic:

𝐹 (𝜽) = −E𝑦,𝒙
[
𝑦𝜑(𝒙, 𝜽)

]
, (12)

and,
𝐾 (𝜽 , 𝜽 ′) = E𝒙

[
𝜑(𝒙, 𝜽)𝜑(𝒙, 𝜽 ′)

]
. (13)

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Another framework 17

Alternative formulation: interacting particle system

ℓ(𝜽1, . . . , 𝜽𝑛) =
𝑛∑
𝑖=1

𝐹 (𝜽 𝑖) +
1
2𝑛

𝑛∑
𝑖, 𝑗=1

𝐾 (𝜽 𝑖 , 𝜽 𝑗) (14)

𝐹 : 𝐷 → R—single particle energy function
𝐾 : 𝐷 × 𝐷 → R—symmetric semi-positive definite interaction kernel

parameters↔ interacting particles

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Interlude: Euclidean gradient flows 18

Discrete time gradient updates

Θ(𝑘+1) = Θ(𝑘) − 𝜏∇𝐹 (Θ(𝑘) ) (15)

Gradient flows 𝜏 → 0

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Proximal gradient descent 19

An implicit formulation, sometimes used for numerical schemes:

Θ(𝑘+1) = argminΘ 𝐹 (Θ) +
1
2𝜏

‖Θ − Θ(𝑘) ‖2
2 (16)

The Euclidean metric is the “proximity” metric.

Θ(𝑘+1) = Θ(𝑘) − 𝜏∇𝐹 (Θ(𝑘+1) ) (17)

Closely related to “mirror descent” algorithms.
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What about gradient flows on abstract measure spaces? 20

How to formulate explicit scheme? Proximal scheme: need a metric.
The Wasserstein p-distance is

𝑊𝑝 (𝜇, 𝜈) = inf
𝜋∈Π(𝜇,𝜈)

(∫
Ω×Ω

|𝒙 − 𝒚 |𝑝𝑑𝜋(𝒙, 𝒚)
)1/𝑝

(18)

where the connection 𝜋 is a probability measure in the set

Π(𝜇, 𝜈) =
{
𝜋 : Ω ×Ω → [0, 1]

���� 𝑑𝜇(𝒙) = ∫
𝒚∈Ω

𝑑𝜋(𝒙, 𝒚),

𝑑𝜈(𝒙) =
∫
𝒙∈Ω

𝑑𝜋(𝒙, 𝒚)
}
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Otto calculus 21

[JKO98] established the relationship betweent the Fokker-Planck
equation and Wasserstein gradient flows.

𝜕𝑡 𝜌 = ∇ · ∇(𝜌∇𝑉) + 𝛽−1Δ𝜌 (19)

Is gradient flow on𝑊2 of “free energy” functional,

F [𝜌] =
∫
𝑉𝑑𝜌 + 𝛽−1

∫
log 𝜌𝑑𝜌 (20)

(cf. blog post)

End of interlude
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Deriving a PDE for training in F1 22

∫
𝐷
𝜒(𝜽)𝜕𝑡𝜇 (𝑛)𝑡 (𝑑𝜽) 𝜇 (𝑛)𝑡 =

1
𝑛

∑
𝛿𝜽𝑖 (𝑡) (𝑑𝜽)

=
1
𝑛

𝑛∑
𝑖=1

∇𝜒(𝜽 𝑖 (𝑡)) · ¤𝜽 𝑖 (𝑡)

=
1
𝑛

𝑛∑
𝑖=1

∇𝜒(𝜽 𝑖 (𝑡)) ·
(
∇𝐹 (𝜽 𝑖 (𝑡)) +

1
𝑛

𝑛∑
𝑗=1

∇𝐾 (𝜽 𝑖 (𝑡), 𝜽 𝑗 (𝑡))
)

=
∫
𝐷
∇𝜒(𝜽) ·

(
∇𝐹 (𝜽) +

∫
𝐷
∇𝐾 (𝜽 , 𝜽 ′)𝜇 (𝑛)𝑡 (𝑑𝜽 ′)

)
𝜇 (𝑛)𝑡 (𝑑𝜽)
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Mean-field Training Dynamics 23

Nonlinear Liouville Equation

𝜕𝑡𝜇𝑡 = ∇ · (∇𝑉 (𝜽 , 𝜇𝑡 )𝜇𝑡 ) (21)

where
𝑉 (𝜽 , 𝜇) = 𝐹 (𝜽) +

∫
𝐾 (𝜽 , 𝜽 ′)𝜇(𝑑𝜽 ′) (22)

[MMN18, CB18b, RV18, SS18]
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Questions?
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Trainability and convergence results



Asymptotic convexity 26

The Wasserstein gradient flow,

𝜕𝑡𝜇𝑡 = ∇ · (∇𝑉 (𝜽 , 𝜇𝑡 )𝜇𝑡 ) (23)

is a flow on the convex energy functional

E[𝜇] = 𝐶 𝑓 −
∫
𝐷
𝐹 (𝜽)𝜇(𝑑𝜽) + 1

2

∫
(𝐷)2

𝐾 (𝜽 , 𝜽 ′)𝜇(𝑑𝜽)𝜇(𝑑𝜽 ′)

= 1
2

∫
Ω

(
𝑓 (𝒙) −

∫
𝐷
𝜑(𝒙, 𝜽)𝜇(𝑑𝜽)

)2
𝜈(𝑑𝒙) ≥ 0

(24)
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LLN for mean-field dynamics 27

Dynamics at the level of the function representation:

𝜕𝑡 𝑓𝑡 (𝒙) =
∫
𝐷
𝜑(𝒙, 𝜽)𝜕𝑡𝜇𝑡 (𝑑𝜽)

= −
∫
𝐷
∇𝜽𝜑(𝒙, 𝜽) ·

(∫
Ω
∇𝜽𝜑(𝒙′, 𝜽) ( 𝑓𝑡 (𝒙′) − 𝑓 (𝒙′)) 𝜈(𝑑𝒙′)𝜇𝑡 (𝑑𝜽)

)
(25)

Theorem (Law of Large Numbers [RV18])
For *well-prepared initial conditions*, as 𝑛→ ∞, 𝑓 (𝑛)𝑡 → 𝑓𝑡 a.s.
pointwise, where 𝑓𝑡 satisfies

𝜕𝑡 𝑓𝑡 (𝒙) = −
∫
Ω
𝑀 ( [𝜇𝑡 ], 𝒙, 𝒙′) ( 𝑓𝑡 (𝒙′) − 𝑓 (𝒙′)) 𝜈(𝑑𝒙′). (26)
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The kernel and convergence 28

The kernel is positive semi-definite. Explicitly,

𝑀 ([𝜇], 𝒙, 𝒙′) =
∫
𝐷
∇𝜽𝜑(𝒙, 𝜽) · ∇𝜽𝜑(𝒙′, 𝜽)𝜇(𝑑𝜽)

=
∫
R×�̂�

(
𝑐2∇𝒛𝜑(𝒙, 𝒛) · ∇𝒛𝜑(𝒙′, 𝒛) + 𝜑(𝒙, 𝒛)𝜑(𝒙′, 𝒛)

)
𝜇(𝑑𝑐, 𝑑𝒛).

(27)
What are the conditions for global convergence?
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Long time convergence 29

▶ Easy to see energy is decreasing:

𝑑𝐸

𝑑𝑡
= −

∫
𝐷
|∇𝑉 (𝜽 , [𝜇𝑡 ]) |2𝜇𝑡 (𝑑𝜽) (28)

▶ Sufficient condition for fixed points ∇𝑉 (𝜽 , 𝜇) = 0
▶ Hard to ensure that stationary points are global minimizers:{

𝑉 (𝜽 , [𝜇∗]) ≥ 𝑉 [𝜇∗] for 𝜽 ∈ 𝐷
𝑉 (𝜽 , [𝜇∗]) = 𝑉 [𝜇∗] for 𝜽 ∈ supp 𝜇∗

(29)

𝑉 [𝜇] =
∫
𝐷
𝑉 (𝜽 , 𝜇)𝜇(𝑑𝜽)
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Convergence results 30

Homogeneous nonlinearities suffice!

Proposition (Global convergence)
If 𝜇𝑡 → 𝜇∗ ∈ M+(𝐷) as 𝑡 → ∞, then for 𝑓 ∈ F1(𝜑), 𝜇∗ is a minimizer
of E[𝜇] and we have

lim
𝑡→∞

∫
𝐷
𝜑(·, 𝜽)𝜇𝑡 (𝑑𝜽) =

∫
𝐷
𝜑(·, 𝜽)𝜇∗(𝑑𝜽) = 𝑓 . (30)

[CB18b, RV18]

Pithily,
lim
𝑛→∞

lim
𝑡→∞

𝑓 (𝑛)𝑡 = 𝑓 .

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Convergence results 30

Homogeneous nonlinearities suffice!

Proposition (Global convergence)
If 𝜇𝑡 → 𝜇∗ ∈ M+(𝐷) as 𝑡 → ∞, then for 𝑓 ∈ F1(𝜑), 𝜇∗ is a minimizer
of E[𝜇] and we have

lim
𝑡→∞

∫
𝐷
𝜑(·, 𝜽)𝜇𝑡 (𝑑𝜽) =

∫
𝐷
𝜑(·, 𝜽)𝜇∗(𝑑𝜽) = 𝑓 . (30)

[CB18b, RV18]
Pithily,

lim
𝑛→∞

lim
𝑡→∞

𝑓 (𝑛)𝑡 = 𝑓 .

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Going to next order to understand the error 31

▶ Discrepancy between parameter measures:

𝜔 (𝑛)
𝑡 = 𝑛1/2

(
𝜇 (𝑛)𝑡 − 𝜇𝑡

)
,

▶ Deviation in the function representation:

𝑔 (𝑛)𝑡 = 𝑛1/2
(
𝑓 (𝑛)𝑡 − 𝑓𝑡

)
=

∫
𝐷
𝜑(·, 𝜽)𝜔 (𝑛)

𝑡 (𝑑𝜽)

= 𝑛−1/2
𝑛∑
𝑖=1

(
𝜑(·, 𝜽 𝑖 (𝑡)) −

∫
𝐷
𝜑(·, 𝜽)𝜇𝑡 (𝑑𝜽)

)
𝜕𝑡𝑔𝑡 = −

∫
Ω
𝑀 (𝒙, 𝒙′, 𝜔𝑡 ) ( 𝑓𝑡 (𝒙′) − 𝑓 (𝒙′)) 𝜈(𝑑𝒙′)

−
∫
Ω
𝑀 (𝒙, 𝒙′, 𝜇𝑡 )𝑔𝑡 (𝒙′)𝜈(𝑑𝒙′)

(31)
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Statement of the CLT 32

Proposition (CLT)
As 𝑛→ ∞, 𝑔 (𝑛)𝑡 → 𝑔𝑡 in law, where 𝑔𝑡 is the zero mean Gaussian process
with covariance given by an explicit, closed equation of 𝑓 (cf. [RV18]).

Some context:

1. Expect Monte Carlo type error (scales 𝑛−1/2)

2. No explicit dependence on the dimension

3. Bounds on long time behavior?
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Long time behavior of the fluctuations 33

lim
𝑡→∞

lim
𝑛→∞

𝑛Ein

∫
Ω
| 𝑓 (𝑛)𝑡 (𝒙) − 𝑓𝑡 (𝒙) |2𝜈(𝑑𝒙)

≤
∫
𝐷
𝐾 (𝜽 , 𝜽)𝜇∗(𝑑𝜽) −

∫
Ω
| 𝑓 (𝒙) |2𝜈(𝒙)

(32)

Goes to zero for functions in F1!

101 103

t

10−5

10−4

10−3

10−2

10−1

√ n
·A

vg
F

lu
c

(exact) n=128

(exact) n=256

(exact) n=512

101 103

t

10−7

10−5

10−3

10−1

A
vg

L
os

s

101 103

t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

A
vg

T
V

101 103

t

0.0

0.5

1.0

1.5

2.0

2.5

A
vg

2-
n

or
m

d = 16 , q = 0 , λ = 0.0000

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Examples: student-teacher paradigm 34

Analytically tractable population loss for uniform data on sphere.

𝑓 (𝒙) = 1
𝑛𝑇

𝑛𝑇∑
𝑖=1

𝑐𝑖 [𝒙 · 𝒛𝑖]+
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𝑝-spin models 35

𝑓 : 𝑆𝑑−1(
√
(𝑑)) → R; 𝑥 ↦→ 𝑑−1

𝑑∑
𝑝,𝑞,𝑟

𝑎𝑝,𝑞,𝑟𝑥𝑝𝑥𝑞𝑥𝑟

For 𝑎𝑖 𝑗𝑘 Gaussian, we get a complicated, “rugged” function in high

dimension.
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𝑝-spin models 36
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𝑝-spin models 37
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Nonlocal algorithms



Lifting the measure 39

SGD is a fundamentally local algorithm. What if we could teleport
mass nonlocally?

Easy at the level of the PDE…Birth-Death dynamics:

𝜕𝑡𝜇𝑡 = ∇ · (𝜇𝑡∇𝑉) − 𝛼𝑉𝜇𝑡 (33)

Conserving population

𝜕𝑡𝜇𝑡 = ∇ · (𝜇𝑡∇𝑉) − 𝛼(𝑉 −𝑉)𝜇𝑡 (34)

[RJBV19]
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Wasserstein-Fisher-Rao 40

We can view this as a change of metric. The PDE

𝜕𝑡𝜇𝑡 = −𝛼𝑉𝜇𝑡 + 𝛼𝑉𝜇𝑡 , (35)

corresponds to the proximal update

𝜇𝑘+1 ∈ argmin
(
E[𝜇] + (𝛼𝜏)−1𝐷KL(𝜇 | |𝜇𝑘)

)
(36)

Splitting scheme between𝑊2 step and 𝐷KL step leads to WFR metric.

Grant M. Rotskoff Deep Learning Theory Summer School SJTU



Birth-death processes 41

Implement the PDE at “particle level” by killing and cloning particles
according to a Markovian dynamics.
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Establishing convergence 42

Theorem (Global Convergence to Global Minimizers)
Let 𝜇𝑡 denote the solution of the birth-death PDE with initial condition 𝜇0
with supp 𝜇0 = 𝐷. If 𝜇𝑡 ⇀ 𝜇∗ as 𝑡 → ∞ for some probability measure
𝜇∗ ∈ M(𝐷), then 𝜇∗ is a global minimizer of E[𝜇].
Cf. [RJBV19] for convergence rate, non-interacting case, and detailed
proofs.
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Proof details 43

Some comments about the proof:

𝜕𝑡𝜇𝑡 = ∇ · (𝜇𝑡∇𝑉) − 𝛼(𝑉 −𝑉)𝜇𝑡 (37)

1. Any fixed point must satisfy 𝑉 (𝜽 , 𝜇) = 𝑉 (𝜇) on supp 𝜇
2. Still must check that 𝑉 ≥ 𝑉 outside supp 𝜇!

Straightforward (but not simple) argument by contradiction.
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Energy decay rate 44

𝐸 (𝑡) = E[𝜇(𝑡)] satisfies

¤𝐸 (𝑡) = −
∫
𝐷
|∇𝑉 (𝜽 , [𝜇𝑡 ]) |2𝜇𝑡 (𝑑𝜽)

−𝛼
∫
𝐷

(
𝑉 (𝜽 , [𝜇𝑡 ]) −𝑉 [𝜇𝑡 ]

)2
𝜇𝑡 (𝑑𝜽) ≤ 0.

That rate of decrease is faster than plain GD (with a caveat!)
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Convergence rate for the dynamics 45

Theorem (Asymptotic Convergence Rate)
Same setup as for global convergence, ∃𝐶 > 0 and 𝑡𝐶 > 0 such that
𝐸 (𝑡) = E[𝜇𝑡 ] − E[𝜇∗] ≥ 0 satisfies

𝐸 (𝑡) ≤ 𝐶𝑡−1 if 𝑡 ≥ 𝑡𝐶 (38)

NB: 𝐶 is not explicit, and could scale poorly.
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Simple example: mixtures of gaussians 46

Empirically, convergence properties are good!
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Expanding the support with a “birth” measure 47

Can ensure full support by reinjecting particles according to some
measure with full support.
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Open problems



Some things to ponder 49

1. Do generic deep architectures admit a mean-field limit?

2. How does depth change the approximation error?

3. ResNets have a clear mean-field limit—what is the function class
they form?

4. Are there other metrics that aid convergence?

5. Dynamical strategies for avoiding stationary points?
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