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Learning nonequilibrium control forces to characterize dynamical phase transitions
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Sampling the collective, dynamical fluctuations that lead to nonequilibrium pattern formation requires probing
rare regions of trajectory space. Recent approaches to this problem, based on importance sampling, cloning, and
spectral approximations, have yielded significant insight into nonequilibrium systems but tend to scale poorly
with the size of the system, especially near dynamical phase transitions. Here we propose a machine learning
algorithm that samples rare trajectories and estimates the associated large deviation functions using a many-body
control force by leveraging the flexible function representation provided by deep neural networks, importance
sampling in trajectory space, and stochastic optimal control theory. We show that this approach scales to hundreds
of interacting particles and remains robust at dynamical phase transitions.
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I. INTRODUCTION

Large deviation techniques have been used recently to
gain physical insight into the steady state and fluctuations
of a diverse set of systems driven away from equilibrium,
including diffusive and colloidal systems [1–3], glassy dy-
namics [4–7], interacting particle systems driven by external
reservoirs [8–10], and active matter [11–14]. Fluctuations
of dynamical quantities, such as currents and kinetic activ-
ities, provide information about complex pattern formation
and phase behavior that can emerge in these systems when
detailed balance is broken. The study of nonequilibrium
fluctuations has also led to the discovery of fundamen-
tal results, such as the fluctuation relation [15–17], which
encodes symmetries in the distribution of the entropy pro-
duction, and, more recently, the thermodynamic uncertainty
relation [18–20], which connects current fluctuations to
dissipation.

The likelihood of fluctuations is described in large devia-
tion theory by functions playing the role of nonequilibrium
potentials, which are notoriously difficult to compute for
complex and high-dimensional systems. While analytical
treatment is possible for some systems [21–23], we must gen-
erally estimate these functions numerically. Many algorithms
have been proposed for this purpose, based either on spectral
methods or on sampling rare trajectories, using a combination
of importance sampling [24–27], cloning [28–31], and rein-
forcement learning [32–35]. Good results are reported with
most methods, although it remains challenging to obtain good
convergence in systems with many degrees of freedom, espe-
cially when probing fluctuations near phase transitions [25].

In this paper, we present an algorithm that combines con-
trol theory, importance sampling, and, crucially, the robust
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and flexible function representations offered by neural net-
works to calculate large deviation functions. The algorithm
uses recent developments in machine learning approaches
to PDEs [36,37] and estimates large deviation functions by
adaptively constructing a many-body control force that drives
a nonequilibrium system of interest in an optimal way to-
wards a given dynamical fluctuation. Unlike other methods
that construct a control force, our approach is based on a direct
stochastic optimization of a cost functional for trajectories,
in which gradients are computed through the dynamics or
via an adjoint stochastic dynamics, which is robust over long
trajectories [38].

We illustrate our algorithm with two stochastic models:
a simple diffusion showing a dynamical phase transition in
the low-noise limit and a model of active Brownian particles
driven by pair interactions and an alignment force. The results
for both show that our approach is robust near dynamical
phase transitions and efficiently scales to large systems of
interacting particles, which are difficult to treat with spec-
tral methods or cloning algorithms. For the active Brownian
particle model, we are able for instance to estimate large
deviation functions for systems of up to 200 particles, which
is unreachable for cloning without substantial computational
power. Our algorithm requires fewer parallel replicas than
cloning algorithms, uses much less memory by relying on
single trajectories, and converges faster, as we demonstrate
with the simple diffusion model.

II. MODEL AND LARGE DEVIATIONS

We consider systems described by a stochastic differential
equation (SDE) having the general form

dX t = b(X t )dt + σdW t , (1)

where X t ∈ Rd is the state of the system, b : Rd → Rd is
the drift function, and W t is a Wiener process acting as a
noise source (often represented as a Gaussian random variable
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δ-correlated in time), which is multiplied by the noise ma-
trix σ . This model captures the diffusive dynamics of many
physical systems, as the drift or “force” b(x) can include
the gradient of a many-body potential energy describing the
interactions among a large number of particles, in addition
to nonconservative and hence nonequilibrium external forces.
We assume that the drift and the noise source are such that
X t is ergodic, so that it has a unique probability stationary
density, reached from any initial distribution in the long-time
limit. For simplicity, we also assume that σ is independent
of x and that the corresponding diffusion tensor D = σσ T is
invertible.

Given the dynamics for X t , we are interested in finding
the distribution of time-integrated or “dynamical” observables
having the form

AT = 1

T

∫ T

0
f (X t )dt + 1

T

∫ T

0
g(X t ) ◦ dX t , (2)

which represent many physical quantities of interest, depend-
ing on the choice for the functions f : Rd → R and g : Rd →
Rd . These include, for example, residence times, the entropy
production, and other worklike quantities arising in stochastic
thermodynamics [39,40]. While the exact probability density
ρT (a) of AT cannot be obtained exactly, in general, it is known
to scale for large observation times T as

ρT (a) � e−T I (a), (3)

where the symbol � denotes asymptotic equality up to log-
arithmic corrections. This result defines the large deviation
approximation of ρT (a), characterised by the rate function
I : R → R [41]. Calculating or estimating this function has
become a central problem in statistical physics, as it not only
determines the likelihood of fluctuations of AT around its
typical value, but also provides information about the phase
behavior and symmetries of nonequilibrium systems [42–44].

In most cases, the rate function is obtained not directly
from the density of AT , but from the Legendre transform of the
scaled cumulant generating function (SCGF) of AT , defined as

ψ (λ) = lim
T →∞

1

T
logEX eλTAT , (4)

where EX denotes an expectation over (1) and λ ∈ R is a pa-
rameter conjugate to AT . For Markov processes, the SCGF is
the dominant eigenvalue of a linear operator, corresponding in
the case of diffusions to a modification of the Fokker–Planck
generator [45]. Hence, the computation of the SCGF and, in
turn, the rate function, reduces to a spectral problem, which
can be solved if the system’s size or dimension is not too
large. Alternatively, one can attempt to sample trajectories
using path space Monte Carlo to estimate the expectation in
the SCGF; however, this approach is not efficient, in general,
since it involves exponentially rare events that do not occur
spontaneously on timescales accessible to simulations.

To address these limitations, many strategies have
been proposed recently, based on various numerical meth-
ods, including the power method [27], diffusion Monte
Carlo [26,28–31], recurrent neural network [46], and rein-
forcement learning algorithms [33–35]. The method that we
propose is based on importance sampling and proceeds by
changing the process X t to a new process X u

t governed by

the SDE

dX u
t = ut

(
X u

t

)
dt + σdW t , (5)

in which the drift b(x) is replaced by the control drift ut (x),
to rewrite the expectation of the SCGF in terms of this new
process as

ψ (λ) = lim
T →∞

1

T
logEXu

(
eλTAT

dP [X u]

dPu[X u]

)
. (6)

The idea with this change of process is to bias the estimation
of the expectation towards trajectories that most contribute to
the expectation—hence, the phrase “importance sampling”—
thereby reducing the variance of the simulated estimator.
These trajectories are rare with respect to X t ; the goal is to
make them typical with respect to the new process X u

t . The ra-
tio dP [X u]/dPu[X u] is called the Radon–Nikodym derivative
and is there to correct for the fact that the expectation is com-
puted not from the original path probability (or path ensemble)
P [X u], as in Eq. (4), but from a biased path probability Pu[X u]
related to X u

t . This ratio can be computed explicitly along a
given path using the Girsanov theorem [47].

The optimal change of process or optimal control process
that achieves the smallest variance in importance sampling is
known [48]. Its drift maximizes the cost

L[X u, u] = λTAT − 1

2

∫ T

0

(
us − b

)
D−1(us − b)

(
X u

s

)
ds,

(7)
which we derive in Appendix A. Moreover, it is known that,
in the limit T → ∞, the maximizing control drift is time-
independent and that the maximum of the Lagrangian is the
SCGF [48], so that

ψ (λ) = lim
T →∞

1

T
sup

u
EXuL[X u, u]. (8)

This variational representation of the SCGF has a clear
interpretation: the first term in the Lagrangian (7) enforces the
target rare event (constraint) AT = a with a Lagrange multi-
plier λ, while the second term is the Girsanov weight related to
the change of drift that measures the extent to which the con-
trolled process deviates from the original process [49]. From
this point of view, the optimal control process is interpreted
as the process closest to the original process, as measured
by the Girsanov weight, that achieves AT = a as a typical
rather than a rare event. In a more physical way, we can also
interpret the optimal drift u∗(x) of that process as an effective
drift that “creates” the fluctuation AT = a [48,50,51]. This
provide as physical mechanism explaining how fluctuations
are created in time, which is useful for studying dynamical
phase transitions.

III. ALGORITHM

The variational representation of the SCGF shown in
Eq. (8) has a form that is standard in control theory and,
as such, is amenable to Ritz-type methods that optimize a
parametric representation u(x, λ; θ) with respect to some set
of variational parameters θ. Directly carrying out this opti-
mization is nontrivial, as it requires representing a potentially
complex, many-body force, motivating several sophisticated
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Algorithm 1. Concurrent Training.

1: Data: Lagrangian L[X u, δu(X u
t , λ; θ), λ], initial θ, kmax ∈ N total

iterations, T ∈ R the duration of sampled trajectory, N (m) ∈ N
the batch size. {λ1, λ2, · · · , λM} ⊂ R, α > 0 the learning rate.

2: k = 0
3: while k < kmax do
4: for m = 1, . . . , M do
5: for n = 1, . . . , N (m) do
6: Sample X u(λm )

[0,T ],n according to dX u
t = [b(X u

t )
+δu(X u

t , λm; θ)]dt + σdW t with initial condition X u(λm )
0,n ;

7: Compute
L(m,n)

θ = λn

∫ T
0 f (X u(λm )

t,n )dt + g(X u(λm )
t,n ) ◦ dX u(λm )

t,m

− 1
2

∫ T
0 δu(X u(λm )

t,n , λm; θ)D−1δu(X u(λm )
t,n , λm; θ)dt ∇θL(θ)

= 1
M

∑M
m=1

1
N (m)

∑N (m)
n=1 ∇θL(m,n)

θ

8: Update θ ← θ + α∇θL(θ)
9: Update the initial condition X u(λm )

0,n ← X u(λm )
T,n

10: procedure (OPTIONAL) REPLICA EXCHANGE:
11: Select two random integers n1, n2 such that ni � N (mi );
12: Compute the Radon-Nikodym derivative:

MT = dP [X
u(λm1 )
[0,T ],n1

]

dP [X
u(λm2 )
[0,T ],n2

]
= exp{− 1

4D

∫ T
0 |Ẋu(λm1 )

t,n1
−u(X

u(λm1 )
t,n1

,λm1 )|2dt}
exp{− 1

4D

∫ T
0 |Ẋu(λm2 )

t,n2
−u(X

u(λm2 )
t,n2

,λm2 )|2dt}

13: u ∼ Uniform(0, 1)
14: if u < min[1, MT ]

15: exchange X
u(λm1 )
0,n1

and X
u(λm2 )
0,n2

.
16: return: θ.

strategies that rely on intricate basis functions, Malliavin
weight sampling, and reinforcement learning [33–35,52].

Our contribution is to solve this high-dimensional control
problem using gradient-based optimization and deep neural
networks, which are well-suited to this task [53–58] due to
their robust function approximation properties, even in high-
dimensional settings. The pseudocode of our optimization
algorithm is presented in Algorithm 1 and a Python source
code is available online [59]. There are four important com-
ponents to our algorithm:

a. Neural network representation of the drift. Following
recent works on the deep Ritz method [36], we represent the
change in control drift

δu(x) = u(x) − b(x), (9)

using a neural network that contains multiple layers Li, where
each layer consists of two linear transformation, two nonlinear
activation functions and a residual connection:

Li(X ) = φ[Wi,2 · φ(Wi,1X + bi,1) + bi,2] + X , (10)

where Wi, j ∈ Rh×h and bi, j ∈ Rh are parameters for the ith
layer, h is the dimension of the hidden layers, and φ is the
activation function. The residual connection expressing each
layer as Li(X ) = f (X ) + X helps with stability and avoiding
the vanishing gradient problem.

Since our approach requires simulating trajectories from
Eq. (5), an unbounded activation such as ReLU may lead to
divergence of the sampled trajectories. To avoid this problem,
we use tanh(·) as the activation function throughout this paper
though other nonlinearities may also be suitable. The full

network can then be expressed as

zθ (X ) = Ln ⊗ · · · ⊗ L1(X ). (11)

The input X ∈ Rd for the first layer is padded by a zero
vector when d < h. Finally, the ansatz δu(X t , λ; θ) ∈ Rd is
expressed as a linear transform of zθ (X ).

b. Loss estimation and gradient. The loss function is esti-
mated, for a given change of drift δu(·, λ; θ), with a collection
or “batch” of N trajectories generated in parallel using direct
Langevin dynamics. The variance and convergence of the
resulting estimator are discussed in Appendix B, which shows
that short time trajectories suffice when the batch size is large.

From the estimated loss, we proceed to compute the loss
gradient to update the parameters θ by differentiating through
the solution of the SDE (5) using recent developments in
machine learning [38,60]. Over short times, we use direct
backpropagation of the dynamics through a Stratonovich time
discretization of the SDE to compute ∇θL. The computational
graph that contains all the gradient information consumes
significant memory resources in this case, so over longer
timescales, we calculate ∇θL by solving instead an adjoint
SDE, detailed in Appendix C. This method is stable and only
requires that we keep the noise history and solve the SDE
backward in time.

c. Estimation of the SCGF and rate function. The repeated
gradient minimization of the loss yields, after enough gradi-
ent steps, a single estimated point ψ (λ). To obtain the rate
function, the SCGF must be estimated by training the neural
network for multiple values of λ either simultaneously or se-
quentially. In the first case, which we term concurrent training,
the loss function at each training step is evaluated as the mean
of the loss function with each λm from a set {λ1, λ2, · · · , λM}.
We find that the expressiveness of the neural networks we use
allows a single force function u(·, λ) to capture the control
forces for a wide range of λ, even when there are multi-
ple dynamical phases. For high-dimensional systems, where
the batch size is limited, one may alternatively start with
a given λ, e.g., 0, and sequentially increase or decrease λ.
This sequential training approach, which is similar to transfer
learning [61], shows fast convergence.

d. Replica exchange. Near dynamical phase transitions,
which lead to rapid changes of the optimal control forces
as a function of λ, we have found that it is useful to share
information from distinct values of λ by employing a path
space variant of the replica exchange method [62], in which
two trajectories corresponding to different λ are swapped ac-
cording to a Metropolis-Hastings algorithm that uses the loss
function in place of an energy. This increases the likelihood
of sampling trajectories in different phases, leading to a more
accurate estimate of the SCGF.

IV. APPLICATIONS

We test our algorithm in this section on two models, which
have been studied before in the context of large deviations
and which illustrate two different challenges faced by large
deviation numerical methods, namely, critical slowing-down
effects related to dynamical phase transitions, and the repre-
sentation of the control force for high-dimensional systems, in
particular, many-body systems.
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FIG. 1. Results of the diffusion in the quartic potential. (a) SCGF for the observable (13) for decreasing temperatures ε. The solid line
represents the exact solution (14) in the zero-noise limit. The inserted figure shows the second derivative of the SCGF for ε = 0.01, confirming
a second order dynamical phase transition. In this example the hidden layer dimension and number of layers of the neural network are 50
and 2, respectively. A smaller hidden layer dimension such as 10 is able to generate results with similar accuracy but requires longer time for
training. We first select 11 λ values uniformly from −1 to 1, where each λ contains 20 replica. At each training step, a total number of 220
trajectories with T = 5 are generated with the Euler-Maruyama method (dt = 10−3). The neural network is updated through standard back
propagation where the gradient is computed by the adaptive gradient algorithm method (AdaGrad) with a learning rate 5 × 10−3. The resulting
estimation of the SCGF is then refined by changing λ and simulating the resulting driven process. (b) Illustration of the concurrent training
with ε = 0.01. Each line corresponds to the evolution of the cost function with a specific λ.

A. Simple diffusion

For the first test, we consider a 1D diffusion in a quartic
potential,

dXt = −X 3
t dt +

√
2εdWt , (12)

and we focus on the observable,

AT = 1

T

∫ T

0
Xt (Xt + 1)dt . (13)

For this model, the SCGF scaled by the strength ε of the
noise is known to display a second-order dynamical phase
transition in the small-noise limit, meaning that the derivative
of ψε (λ) = εψ (λ) is not differentiable at λ = 0 when consid-
ering the additional limit ε → 0. This can be checked from
the exact result

ψ0(λ) = lim
ε→0

ψε (λ) = max
q

{λ(q2 + q) − q6/4}. (14)

Resolving this phase transition using cloning algorithms is
challenging, due to a critical slowing down of the dynamics,
which can be alleviated to some degree by incorporating adap-
tive feedback methods [25].

The low-noise limit is not a bottleneck for our algorithm.
Using short trajectories (T = 5), we concurrently trained a
single neural network with a set of values for λ in the range
[−1, 1]. The results, plotted in Fig. 1(a), agree exceptionally
well for ε = 0.01 with the exact result obtained in the low-
noise limit. For most values of λ, we find in fact that the
normalized mean squared error between our estimate of the
SCGF and the exact result is about 0.2%. This can be reduced
by training the network for a single λ rather than concurrently
for many λ values. Replica exchange is not crucial here and
does not noticeably improve the accuracy. The numbers of
steps required to reach ψ (λ) is shown in Fig. 1(b) to vary little
for different ε—typically in the range of 400 to 600 steps. The
rapid convergence that we observe away from the dynami-
cal phase transition may be due to the fact that we employ
overparameterized neural networks, which do not suffer from

overfitting and converge to global minimizers when the loss
function can be repeatedly sampled, a setting known as online
learning [54,63,64].

To compare our algorithm with the cloning algorithm with
feedback, we have applied the latter to the same model. In
brief, the cloning method [29] evaluates the SCGF by sim-
ulating a batch of trajectories (clones) and by duplicating or
eliminating trajectories according to weights computed from
the trajectory ensemble. Generally, this population dynamics
method requires a exponentially large number of replicas of
the system as the desired event becomes rarer (or equivalently,
as the magnitude of the noise decreases). To overcome this
issue, [25] proposed a feedback approach, in which a control-
ling potential function is adaptively constructed to modify the
original dynamics.

The convergence of this cloning algorithm with feedback
with that of our algorithm for various batch or clone sizes and
values of λ are compared in Fig. 2 in terms of computational
time on a single machine measured in minutes. The results
clearly show that our algorithm is significantly faster and more
stable than the cloning algorithm, especially when the biasing
parameter λ is far from 0. The difference in performance
is partly due to the fact that the feedback in the cloning
algorithm relies on estimating two probability distributions,
which is limited by the relaxation time of the original system.
Moreover, as λ deviates from 0, more iterations for updating
the control potential are required to realize the rare events. In
our algorithm, no distributions are estimated: the control drift
is obtained directly by the taking the gradient of the estimated
cost over a number of batches, which, contrary to the cloning
algorithm, need not be stored in memory. Moreover, the re-
sults plotted in Fig. 2 show again that the number of steps
needed to converge to the optimal drift does not vary much
with λ.

There is another significant difference in that the control
potential in the cloning algorithm is represented by a linear
combination of a set of basis functions such as polynomials,
so it requires a priori knowledge to choose the adequate basis
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FIG. 2. Comparison of our machine learning approach with the cloning method with feedback. We computed the SCGF for the 1D diffusion
system described as in (12) with ε = 0.01. N is the batch size (for the ML approach) or the number of clones (for the cloning method). For the
cloning method, we set the trajectory length to be T = 0.3 (dt = 10−3), and updated the control potential every 75 steps so the time interval
between updating is 22.5. All results were computed in the same personal computer, using CPU only.

functions, often in a case by case manner. By comparison, the
machine learning approach that we propose is agnostic, mean-
ing that it can be applied to a broad class of problems without
any modifications of the algorithm or specific knowledge of
the underlying structure of the problem [65]. Yet another
advantage is that it has an inherently parallel structure and
can evaluate the SCGF for multiple λ simultaneously. Cloning
does not benefit from this parallel structure as the SCGF must
be evaluated with a potential specific to each value of λ.

B. Active Brownian particles

Theoretical [66–68] and numerical [69] characterizations
of active matter provide a compelling model for nonequilib-
rium phenomena. Minimal models, such as actively driven
Brownian particles (ABPs) with purely repulsive interaction
potentials, exhibit a rich spectrum of collective fluctuations
and nonequilibrium phase separation emerging from the im-
pact of persistent, directional motion on the local diffusivity
of the constituent particles. The precise connection between
energy dissipation and pattern formation in these nonequilib-
rium transitions remains a topic of intense research [70–72].
For example, the correlation between the structure formation
in ABPs and fluctuations in entropy production was recently
described by GrandPre et al. [73]. Probing the connection
between rare dynamical behavior and collective fluctuations,
however, is extremely challenging because the onset of clus-
tering in ABPs requires large system sizes and high densities
that can be accessed by cloning type algorithms only with a
large number of replicas.

To test our algorithm, we consider the ABP model in which
the motion of the ith particle is governed by the following

equations:

dX (i)
t =

[
− μ

∂U (X t )

∂x(i)
+ vb(i)

t

]
dt +

√
2DdW (i)

t ,

b(i) = [
cos φ

(i)
t , sin φ

(i)
t

]�
, dφ

(i)
t =

√
6DdW φ(i)

t . (15)

The potential U (X t ) defining the conservative interparticle
force is taken here to be a purely repulsive Weeks-Chandler-
Andersen (WCA) pair potential that depends on the relative
distance li j according to

U (li j ) =
{

4ε[(σ/li j )12 − (σ/li j )6] + ε, li j � 21/6σ,

0, li j > 21/6σ,

(16)
The nonconservative self-propulsion term vb(i) represents the
dissipative “active” force in which b(i)

t are unit vectors that
rotate diffusively and v is the magnitude of the active force.
Finally, W (i)

t and W φ(i)

t are independent standard Wiener pro-
cesses representing noise sources for the state and angle. The
simulations are performed with periodic boundary condition,
and the relative distance matrix li j is adjusted by the minimum
image convention. The unit of length is also normalized by σ

and we set ε = 1.
The phase separation properties of this model have been

studied extensively [66]. When the Péclet number and the den-
sity of particles are high enough, the system exhibits a motility
induced phase transition in which a macroscopic aggregate
of particles forms. This transition has a natural dynamical
correlate with the average entropy production

s = 1

NT

N∑
i=1

∫ T

0
vb(i)

t D−1 ◦ dX (i)
t . (17)
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When the system enters the phase separated state, much of the
directional motion also ceases, leading to a drop in the average
entropy production compared to an unclustered trajectory.
Indeed, several studies have pointed to entropy production be-
ing a natural observable for studying motility-induced phase
separation [73] and nonequilibrium pattern formation in liq-
uids [71,72], though a control-based approach has not been
pursued for these systems to date.

Using our algorithm, we computed the many-body control
forces associated with fluctuations of the entropy production
for various particle numbers (N = 40, 80, 200). The results,
shown in Fig. 3, were computed through the sequential train-
ing, since concurrent training requires a large total batch size
which is computationally costly for high-dimensional sys-
tems. For this system, it is crucial that we do not include
the direction of the active particles φt in the state, other-
wise the entropy production rate can trivially be reduced by
learning control forces antiparallel to the direction of the
active force; this choice has a physical justification, namely,
the directors are in equilibrium and are not reversed under
time-reversal.

The simulations converge over relatively long times when
first driving the system into the clustering phase; however,
once we obtain a control force, they converge fast when
sequentially altering λ. For N = 40, 80, we also noticed
that replica exchange is required to obtain a convex SCGF,
whereas for N = 200, replica exchange is not necessary. The
replica exchange is implemented by concurrently training
with multiple λ values and swapping trajectories between
them. We set λ0 = −0.05, with batch size 75 and 75, respec-
tively. Then at each step all the 75 trajectories are attempted
to be exchanged, as explained in Algorithm 1. In Fig. 4 we
plot the results with and without replica exchange, respec-
tively, in the N = 40 case. The results indicate that replica
exchange is essential for obtaining a convex SCGF. We note
that local convergence can be monitored due to the existence
of a variational principle, but it is not possible to ensure that
the convergence is global when the target rate function is not
known; the same is true for cloning or other machine learning
algorithms.

Going back to our results in Fig. 3 (see also the supplemen-
tary movie), we can see that particles start to aggregate when
the biasing field λ is sufficiently negative. For all system sizes,
the entropy production rate changes dramatically as a function
of λ around a value coinciding with the onset of clustering.
This sharp transition signifies a first-order dynamical phase
transition in the entropy production rate, shown in Fig. 3(b),
related to a singularity in the rate function at the transition
point. Examining the learned controls provides further insight
into the microscopic origins of the transition. As shown in the
inset of Fig. 3(b), the learned control forces lead to net forces
on the particles that favor the aggregated state.

The nonequilibrium fluctuations of active systems have
been studied in a variety of contexts, using unbiased sam-
pling [74], cloning [73], and reinforcement learning [33]. Our
approach considerably simplifies the computation compared
to reinforcement learning because we do not need to learn
an expected value function. Moreover, unlike cloning, our ap-
proach scales to high-dimensional systems without incurring
significant additional computational cost; training for various
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FIG. 3. Small entropy production indicates particle clustering.
(a) The average entropy production at given λ for different system
sizes: N = 40 (blue lines, left), 80 (red lines, middle), and 200
(yellow lines, right). (b) The corresponding rate functions (N = 40
bottom, N = 80 middle, N = 200 top). The inserted figures show
snap shots of typical behaviors in the high entropy production phase
(λ = 0) and low entropy production phase (λ = −0.05), respectively.
The arrow represents the direction of motion. In this example the
hidden layer dimension and number of layers of the neural network
are 1000 and 6 respectively. The batch sizes for results of 40 and
80 particles are 75, and 20 for the 200 particle case. T = 0.1 and
dt = 10−4. The density of particles throughout all three cases is ρ =
N/L2 = 0.1 where L is the length of the simulation box. To avoid
boundary effect, the input of the neural network is not the absolute
position of particles but its relative position to a particular one, i.e.,
u({X (i) − X (0)}) instead of u({X i}). This step is essential otherwise
the learned control force would force particles to the boundary.

λ is easily parallelizable and the integration of the trajectories
can be carried out on heterogeneous hardware. Indeed, the
cloning algorithm would require prohibitive computational
resources compared with our algorithm.

V. DISCUSSION

The results presented in this paper demonstrate the efficacy
of a machine learning algorithm that adaptively learns optimal
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FIG. 4. The estimate of the SCGF and corresponding changes
of average entropy production for N = 40 with/without replica ex-
change. The blue line (no kink) corresponds to the results with
replica exchange and the red line shows the results without.

control forces to directly estimate large deviation functions for
systems extremely challenging for conventional methods. The
algorithm that we have proposed relies on direct stochastic
optimization based on a small number of trajectories, which
themselves may not need to have a long duration—a fact that
requires further investigation. Importantly, the Lagrangian
that we optimize is explicit and exact in the long time limit,
requiring no additional approximation or optimization, as only
the control function is learned. We have shown that the ap-
proach is robust both near dynamical phase transitions and
in the limit of small noise. Like many methods based on
machine learning, the method we propose shows favorable
performance in high-dimensional systems and still identifies
many-body control forces that realize the rare fluctuations
defining dynamical phase transitions.

The examples we have explored here are continuous-time
stochastic differential equations with a constant diffusion term
(and hence additive noise), but it is straightforward to adapt
our algorithm to other types of systems, including those with
multiplicative noise, or with discrete, but innumerable state
spaces such as unbounded Markov jump processes where
directly evaluating the principal eigenvalue is not possible.

Our approach could also be extended to finite-time large de-
viations, though we anticipate that this would require longer
trajectories and therefore the adjoint state method would
likely be mandatory. Learning control forces that drive the
system locally, and hence can be transferred to systems of
increasing size and complexity is among the most attractive
possibilities for future investigation. For interacting particle
systems, if the form of the input and the architecture of the
neural network are carefully designed, it may be possible to
obtain the optimal control force for systems with thousands
of particles by training on smaller, more computationally
tractable systems.
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APPENDIX A: DERIVATION OF THE COST FUNCTIONAL

Using importance sampling, we write the expression for
the SCGF as an expectation over a “tilted” or biased path
measure,

ψ (λ) = lim
T →∞

1

T
log

∫
eλTAT [X u] dP [X u]

dPu[X u]
dPu[X u]. (A1)

This expectation must be estimated for each λ of interest by
collecting trajectories from the controlled process (6). The
relative statistical weight of the unperturbed path measure P
to the path measure of the controlled process Pu is defined
through the Radon–Nikodym derivative. In our case, using the
parametrization u(x, λ) = b(x) + δu(x, λ), this derivative can
be written explicitly using the Girsanov theorem [47] as

dP [X u]

dPu[X u]
≡ MT = exp

[
−

∫ T

0
σ−1δu(X u)dWt

−1

2

∫ T

0
δu

(
X u

t

)
D−1δu

(
X u

t

)
dt

]
, (A2)

where we use the notation MT to emphasize the fact that MT

is a martingale. The first integral in the exponential can be
neglected when the deterministic contribution is finite and we
are left with an expression for Eq. (A1):

ψ (λ) = lim
T →∞

1

T
logEX u exp

[
λTAT [X u]

−1

2

∫ T

0
δu

(
X u

t

)
D−1δu

(
X u

t

)
dt

]
. (A3)

The term inside the exponential is evidently time-extensive
and, in the limit T → ∞, the integral will be dominated by
a saddle point, following the Laplace approximation. As a
result, we obtain

ψ (λ) = lim
T →∞

1

T
sup
δu

EXu{λTAT [X u]

−1

2

∫ T

0
δu

(
X u

t

)
D−1δu

(
X u

t

)
dt

}
. (A4)
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FIG. 5. Variance of the estimator. We illustrate the scaling property of the variance of our estimator (B1) using the small noise example. By
fixing λ = 1 and ε = 0.01, the neural network is trained with (a) a fixed batch size N = 300 with various trajectory length t from 1 to 20, or
(b) a fixed t = 5 and various batch size from 10 to 400. The neural networks in all cases are trained for more than 400 steps, and the variance
is estimated by collecting the data from the last 100 steps. The insert figures show the relative absolute error |ψ̂ (λ) − ψ (λ)|/ψ (λ). The gray
dashed line represents a −1 slope.

Hence, the argument of the supremum becomes a natural
variational objective for δu, which we denote

L[X u, u] = λ

∫ T

0
f
(
X u

t

)
dt + g

(
X u

t

) ◦ dX u
t

− 1

2

∫ T

0
δuD−1δu

(
X u

t

)
dt . (A5)

APPENDIX B: COST ESTIMATOR

We compute the cost functional numerically by simulating
N independent trajectories X u

t,i of the controlled process, re-
ferred to as replica, over a finite time window or horizon [0, t]
by using the estimator

ψ̂Nt (λ) = 1

Nt

N∑
i=1

ψ̂t,i(λ), (B1)

where

ψ̂t,i(λ) = 1

t

{
λ

∫ t

0
f
(
X u

s,i

)
ds + g

(
X u

s,i

) ◦ dX u
s,i

−1

2

∫ t

0
δu

(
X u

s,i

)
D−1δu

(
X u

s,i

)
ds

}
(B2)

is the estimator of the cost functional for one replica. By
the ergodic theorem and the law of large numbers, ψ̂Nt (λ)
converges to the SCGF ψ (λ) in the double limit t → ∞ and
N → ∞, provided that u is the optimal control drift u∗. Note
however that, since u∗ is time-independent, we can obtain the
long-time limit of the optimal cost by considering a finite-time
estimator provided that we take the limit N → ∞, so that
there is only one limit to consider.

This point is illustrated for the 1D diffusion in the low-
noise limit in Fig. 5, which shows the mean square error
(MSE) of the loss estimator or, equivalently, its variance since
it is unbiased:

MSE = E[ψ̂Nt (λ) − ψ (λ)]2 = Var[ψ̂Nt (λ)]. (B3)

Since the N replica are independent, the variance of ψ̂Nt,i(λ)
must scale with N−1 due to the central limit theorem, yielding
MSE = Var[ψ̂t,i(λ)]/N . In general, ψ̂t,i(λ) itself is a time-
extensive variable that satisfies a large deviation principle, so
its variance Var[ψ̂t,i(λ)] scales with t−1. Therefore, overall,
the MSE of the loss estimator decreases as (tN )−1. Hence, a
large-batch and short-time estimator is equivalent to a small-
batch and long-time estimator. In Fig. 5, we confirm this
scaling property by plotting the estimator of ψε (λ) for the
simple diffusion model as a function of integration time or
batch size.

APPENDIX C: ADJOINT STATE METHOD

The adjoint state method for Stratonovich SDEs differs
only marginally from the classical adjoint method for ODEs,
though we note that the method can be extended to multiplica-
tive noise [38]. These methods require forward and backward
integration of the differential equation and, in the stochastic
case, one must solve the SDE backward in time with the same
Wiener process W t used in the forward direction, meaning
that the noise history must be stored. We explain the method
for the ODE case and refer to Ref. [38] for further details.

Consider the ODE
d x

dt
= u(x, t, θ ), x(0) = x0, (C1)

and some objective function L[x(T )], which we would like
to minimize with respect to θ. We note that L depends on θ

through the dynamics because

x(T ) = x0 +
∫ T

0
u(x, t, θ )dt . (C2)

The dependence of L on θ can be computed using classical
sensitivity analysis techniques. Assuming that we can easily
evaluate the cost functional at the final integration time T , we
need to compute

∂L[x(T )]

∂θ
= ∂L[x(T )]

∂x(T )

∂x(T )

∂θ
, (C3)
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where x(t ) is constrained to follow the dynamics (C1). Using
the method of Lagrange multipliers, we can turn this into an
unconstrained optimization where the time-dependent multi-
plier A(t ) is chosen to impose the constraint ẋ = u. That is,
the cost functional becomes

L̃[x(T )] = L[x(T )] −
∫ T

0
A(t )[ẋ − u(x, θ, t )]dt, (C4)

so that

∂L̃[x(T )]

∂θ
= ∂L[x(T )]

∂x(T )

∂x(T )

∂θ
− A(T )

∂x(T )

∂θ

− ∂

∂θ

∫ T

0
Ȧ(t )[x(t ) − u(x, θ, t )]dt

= ∂L[x(T )]

∂x(T )

∂x(T )

∂θ
− A(T )

∂x(T )

∂θ

+
∫ T

0
Ȧ(t )

∂x(t )

∂θ
+ A(t )

∂u(x, θ, t )

∂x(t )

∂x(t )

∂θ

+ A(t )
∂u(x, θ, t )

∂θ
dt . (C5)

From this result, we then choose A so that

Ȧ(t ) = −A(t )
∂u(x, θ, t )

∂x(t )
, A(T ) = ∂L[x(T )]

∂x(T )
, (C6)

to write the gradient as

∂L[x(T )]

∂θ
= −

∫ 0

T
A(t )

∂u(x, θ, t )

∂θ
dt, (C7)

which is solved backward in time because we know the final
condition for the adjoint A(T ).

The stochastic variant of this algorithm is operationally
similar to the procedure outlined above and is particularly
straightforward for Stratonovich SDEs (the convention we use
in numerical experiments with currentlike observables) [38].
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