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Modern theories of the hydrophobic effect highlight its dependence
on length scale, emphasizing the importance of interfaces in the
vicinity of sizable hydrophobes. We recently showed that a faithful
treatment of such nanoscale interfaces requires careful attention
to the statistics of capillary waves, with significant quantitative
implications for the calculation of solvation thermodynamics. Here,
we show that a coarse-grained lattice model like that of Chandler
[Chandler D (2005) Nature 437(7059):640–647], when informed by
this understanding, can capture a broad range of hydrophobic be-
haviors with striking accuracy. Specifically, we calculate probability
distributions for microscopic density fluctuations that agree very
well with results of atomistic simulations, even many SDs from
the mean and even for probe volumes in highly heterogeneous
environments. This accuracy is achieved without adjustment of free
parameters, because the model is fully specified by well-known
properties of liquid water. As examples of its utility, we compute
the free-energy profile for a solute crossing the air–water interface,
as well as the thermodynamic cost of evacuating the space between
extended nanoscale surfaces. These calculations suggest that a
highly reduced model for aqueous solvation can enable efficient
multiscale modeling of spatial organization driven by hydrophobic
and interfacial forces.
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Hydrophobic forces play a crucial role in biological self-assem-
bly, protein folding, ion channel gating, and lipid membrane

dynamics (1–9). The origin and strength of these forces are well
understood at extreme length scales, based on the recognition that
accommodating an ideal volume-excluding hydrophobe in water
carries the same thermodynamic cost as evacuating solvent from the
corresponding volume. On the scale of a small molecule like
methane, density fluctuations that enable such evacuation are
Gaussian-distributed to a very good approximation, even far from
the mean (10). Linear response theories, such as Pratt–Chandler
theory, can thus be quite accurate for assessing solvation of indi-
vidual small hydrophobic species.
Solvation at much larger scales is, by contrast, dominated by

water’s proximity to liquid–vapor coexistence. Hydrophobic forces
involving extended substrates are shaped by the physics of interfaces
and are quantified by macroscopic parameters like surface tension.
In between these extremes, a rich variety of hydrophobic effects
results from the combined importance of nearby phase coexistence
and details of intermolecular structure. Capturing this interplay, for
instance, near a biological macromolecule, presents a significant
challenge for theory.
Lum–Chandler–Weeks (LCW) theory represents the modern

understanding of hydrophobic solvation, providing a conceptual
and mathematical framework to couple interfacial forces with the
short-wavelength density fluctuations that determine solvation of
small molecules (10, 11). The theory’s physical perspective has
inspired the development of coarse-grained lattice models, whose
applications have revealed interesting and general mechanisms for
the role of water in hydrophobic self-assembly processes (2, 12, 13).
Primitive versions of these models, however, long appeared unable

to achieve close quantitative agreement with atomistically detailed
simulations (e.g., for the probabilities of extreme number density
fluctuations in nanometer-scale probe volumes). This short-
coming motivated the construction of more elaborate models,
which include interactions between nonadjacent lattice sites (13)
and/or explicit coupling between density fluctuations at short
and long wavelengths (12). Quantitative accuracy improved as a re-
sult of these additions, but close agreement with detailed simulations
remained elusive, despite the expanded set of adjustable parameters.
The prominence of interfacial physics in this understanding of

hydrophobic effects suggests that the quantitative success of a
coarse-grained model hinges on its ability to accurately capture the
natural shape fluctuations of a liquid–vapor interface (1, 14–16).
We recently showed that doing so with LCW-inspired lattice
models requires closer attention to the statistical mechanics of
capillary waves than was previously paid (14, 17). These fluctua-
tions are pronounced in molecular simulations but present in lat-
tice models only for sufficiently weak coupling « between lattice
sites [i.e., only at temperatures above the roughening transition TR
(18)]. In this rough regime, the relationship between the micro-
scopic cohesive energy « and the macroscopic surface tension γ is
nontrivial. This previously unrecognized connection, which is es-
sential for faithfully representing the spectrum of capillary waves,
yields a lattice model parameterization that is substantially differ-
ent from that in previous work (17), and has thus presented, to our
knowledge, the first primitive LCW-inspired lattice model that fully
respects the statistical mechanics of capillary waves.
Here, we put the lattice model of ref. 17 to a number of exacting

tests, which probe the models’ ability to accurately describe density
fluctuations on the nanometer scales relevant to protein biophysics.
Despite its coarseness and lack of adjustable parameters, this
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model achieves remarkably close agreement with atomistic simu-
lations, even in scenarios with strong spatial heterogeneity. These
tests assess the importance of details we have omitted, such as ex-
plicit coupling between short- and long-wavelength density fields.
A careful analysis of our results underscores the interplay of

length scales accomplished by the coarse-grained model, highlights
the importance of capillary fluctuations, and emphasizes the special
environment for solvation presented by extended interfaces. Our
ultimate conclusion is that diverse hydrophobic phenomena can be
captured quantitatively at a coarse-grained level, with minimal at-
tention to atomic-scale intermolecular structure. It is sufficient to
capture the correct physics at extreme length scales and link them
with simple excluded volume constraints. We illustrate the promise
of such models as practical tools with an application to the asso-
ciation of hydrophobic plates.

Coarse-Graining Water
Coarse-grained models motivated by the LCW approach separately
account for density fluctuations at small and large length scales. As
described by Chandler and coworkers in refs. 12 and 13, long-
wavelength variations are represented on a lattice with microscopic
resolution on the order of a molecular diameter. In the absence of
solutes, walls, or constraints, the corresponding binary occupation
variables ni, which indicate either vapor-like (ni = 0) or liquid-like
(ni = 1) density in cell i, are governed by a lattice gas Hamiltonian

H =−e
X
hi, ji

ninj − μ
X
i

ni, [1]

where μ is the chemical potential for cell occupation and
P

hi, ji
indicates summation over all pairs of nearest neighbor cells. We
consider ambient thermodynamic conditions, at which liquid is
slightly more stable than vapor, μ≈−3e+ δμ, where δμ is the chem-
ical potential offset from coexistence (12) unless otherwise specified.
As in ref. 17, we set e=T = 1.35, within the narrow range that is
consistent with the statistical mechanics of rough interfaces yet far
from criticality. The lattice spacing δ= 1.84 Å is chosen to reproduce
the experimentally determined surface tension γw = 72mN=nm2 of
the air–water interface, according to the approximate relation

πβγwδ
2 = ðβeÞ2 [2]

derived in ref. 17. In addition to having the correct surface ten-
sion, the power spectrum of interfacial height fluctuations of the
lattice gas exhibits capillary scaling for this parameter set of e, δ.
Regions that are locally liquid-like ðni = 1Þ additionally support

short-wavelength density fluctuations δρðrÞ, which are assumed to
obey Gaussian statistics (11). In the absence of constraints, these
continuous fluctuations are characterized by the two-point corre-
lation function

χðr− r′Þ≡ hδρðrÞδρðr′Þi= ρℓδðr− r′Þ+ ρ2ℓ ðgðr− r′Þ− 1Þ, [3]

where r and r′ label positions inside the liquid, ρℓ is the macro-
scopic number density of pure liquid water, and gðrÞ is the radial
distribution function (19). We use estimates of gðrÞ and its Four-
ier transform obtained from experimental measurements by
Narten and Levy (20).
We consider ideal hydrophobic solutes, whose influence on the

solvent is to exclude it from a volume v. Weak, smoothly varying
attractive interactions between solute and solvent amount to a small
perturbation in this context. The effect of, for example, dispersion
forces can therefore be reasonably addressed using perturbation
theory (12, 13).
We model such idealized solutes by imposing a constraint of

solvent evacuation: the total density within v must vanish,

X
i∈v

�
niρℓvi +

Z
vi
dr  δρðrÞ

�
= 0, [4]

where the sum runs over all lattice cells i that intersect v, and vi is
the corresponding volume of intersection.
Gaussian fluctuations in the rapidly varying field δρðrÞ can be

integrated out exactly (11), yielding an effective Hamiltonian
Hv½fnig� for the lattice occupation variables. In the presence ofm
ideal volume-excluding solutes (12, 13),

Hv½fnig�=−e
X
hi, ji

ninj − μ
X

ni +
T
2

h
N

⊤
χ−1in N +C

i
, [5]

where N is an m-component column vector with elements

Nα =Σiρlniv
ðαÞ
i . [6]

vðαÞi denotes the volume of overlap between the αth solute and
lattice cell i, and χin is an m×m square matrix with elements

ðχinÞα,β =
Z
r∈vðαÞ

Z
r′∈vðβÞ

ΘðrÞχðr, r′ÞΘðr′Þ. [7]

Here, ΘðrÞ= 1 if the lattice cell containing r is occupied by sol-
vent and vanishes otherwise. The constant C is given by

C=

(
lnðdetð2πχinÞÞ if  

X
α
Nα > 1,

max
h
lnðdetð2πχinÞÞ,

X
α
Nα

i
otherwise  .

[8]

The last two terms in Eq. 5 improve upon previous lattice-
based models, providing a computationally tractable yet quanti-
tatively accurate approximation for solute–solute interactions
mediated by Gaussian density fluctuations in the surrounding
solvent. Starting from a Gaussian field theory (11), the fluctua-
tions may be derived by applying the constraint in Eq. 4 sepa-
rately to each solute’s excluded volume. Details of this derivation
are included in the Supporting Information.
Note that the coarse-grained model defined by Eq. 5 has es-

sentially no free parameters—in light of Eq. 2, there is very little
freedom in the choice of « and δ (17). We only require the surface
tension of water and the bulk radial distribution function gðrÞ. The
lattice model also lacks explicit energetic coupling between the
density fields ni and δρðrÞ. The fields’ interdependence arises
strictly from the excluded volume constraint expressed in Eq. 4.
Below, we compare calculations based on this coarse-grained

model with results of atomistic molecular dynamics (MD) simu-
lations. Molecular simulations were performed using the extended
simple point charge (SPC/E) model of water (Methods). Several of
these calculations scrutinize the extreme wings of probability dis-
tributions, which were accessed using standard techniques of um-
brella sampling (Methods).

Results and Discussion
We have performed calculations that stringently assess the ability
of an LCW-inspired lattice model to capture details of hydro-
phobic solvation at small-, large-, and intermediate-length scales.
We focus on characterizing and comparing the statistics of density
fluctuations within microscopic probe volumes, in part because of
the fluctuations’ direct relevance to solubility. Specifically, we
calculate the probability PvðNÞ of observing N solvent molecules
within a probe volume of size v. The probability distribution’s
extreme value determines the excess chemical potential μexðvÞ of
an ideal hydrophobe with the corresponding excluded volume,
μexðvÞ=−T   ln  Pvð0Þ. The behavior of PvðNÞ between this extreme
case ðN = 0Þ and more typical values ðN ≈ ρℓvÞ reveals much about
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the physical nature of fluctuations that might be accessed through
application of external fields, solute attractions, or changes in
thermodynamic state (2, 3). With these implications in mind, we
have computed PvðNÞ over its entire meaningful range for a va-
riety of scenarios pertinent to solvation in complex environments.
In addition to atomistically detailed MD simulations and our

LCW-inspired lattice model, we present results for several less
sophisticated models. These simpler descriptions lack one or more
of the physical ingredients underlying LCW theory and thus shed
light on their relative importance. For example, short-wavelength
fluctuations can be straightforwardly neglected by studying the
conventional lattice gas described by Eq. 1, which lacks biases from
Gaussian fluctuations in δρðrÞ. In this case, density variations
within a probe volume can be achieved only through fluctuations of
the binary occupation variables ni. For the parameterization, we
have described ðe=T = 1.35, δ= 1.84 Å), which ensures T >TR,
interfaces of this lattice gas exhibit a spectrum of capillary modes
comparable to that of a natural liquid–vapor interface. Fluctuations
and responses of these capillary modes may contribute significantly
to solvation structure and thermodynamics (4–6).
To assess the importance of capillary fluctuations, we examine

a different parameterization of Eq. 1 ðe=T = 6, δ= 4 Å), for which
T <TR. This lattice gas too supports interfaces with the correct
surface tension. Because its roughening transition lies above
ambient temperature, however, the lattice gas with T <TR lacks
fluctuations in the surface-topography characteristic of capillary
modes (i.e., the typical amplitude of long-wavelength undula-
tions is not proportional to the undulations’ wavelength). Results
from this model thus isolate the contribution of interfacial flexi-
bility to hydrophobic effects, a flexibility that is also neglected in
the mean field treatment of LCW theory (17).
Together, these calculations explore the interplay between

short- and long-wavelength aspects of hydrophobicity. We find in
general that a simple LCW-inspired lattice model can describe
with surprising accuracy the statistics of density fluctuations
observed in detailed molecular simulations. This success is
compromised substantially, in most cases, by omitting the effects
of short-wavelength fluctuations and/or capillary waves, sug-
gesting that our coarse-grained model contains a minimum of
microscopic detail required to quantitatively capture the solva-
tion and association of nanoscale hydrophobic species.

Statistics of Density Fluctuations in Bulk Water. We first examine
density fluctuations in the simplest aqueous environment (i.e.,
bulk liquid water). It has been well established by MD simula-
tions that for small probe volumes ðvK 0.5 nm3) in this homo-

geneous setting, PvðNÞ has a Gaussian form well into the
probability distribution’s tails (10). For larger v, low-density
fluctuations are strongly biased by the small chemical potential
difference between macroscopic liquid and vapor. PvðNÞ then
develops an exponential tail, decaying much more slowly than the
Gaussian fluctuations near hNi= ρℓv would suggest (13). These
basic features of PvðNÞ are essentially built into LCW-inspired
models, but the features’ details can be quite sensitive to the way
such models are constructed and parameterized. As shown in Fig.
1B, the model of Eq. 5, when parameterized with attention to
capillary fluctuations, does an excellent job reproducing distribu-
tions obtained from atomistic MD simulations for nanometer-scale
cubic probe volumes, over a very wide range of N.
Reversibly decreasing N in atomistic simulations from its av-

erage value induces formation of a small, roughly cubic cavity
that grows to span v as N→ 0. This scenario suggests a simple
continuum estimate of PvðNÞ that resolves only the growing in-
terfacial area of the cavity as the probe volume is evacuated. The
surface area of a cubic cavity that accommodates an average of N
water molecules in bulk is A= 6ðN=ρlÞ2=3, which we use as an
estimate of the surface area of the cavity that appears as water
molecules evacuate the probe volume. Assigning the macro-
scopic surface tension γw as the free-energy cost per unit area of
the microscopic cavity, we obtain a prediction for the decay rate
of the exponential tail of PvðNÞ,

∂  ln  PvðNÞ
∂N

≈ 4βγw

�
ρ2l

hNi−N

�1=3

, [9]

that agrees reasonably well with detailed simulation results.
Lacking sensitivity to microscopic fluctuations, this estimate
(plotted in Fig. 1C) unsurprisingly fails to capture the Gaussian
character of PvðNÞ near hNi. Nor does it describe well the overall
free-energy scale associated with emptying v, erring by more than
70 kBT.
Fig. 1C also shows results obtained from simulations of the

lattice gas with T <TR. The parameters’ prediction for PvðNÞ
closely resembles the simple continuum estimate of Eq. 9, ac-
curately describing the low-density slope, but not the scale or
peak behavior, of ln  PvðNÞ. This similarity highlights limitations
of lattice models at temperatures below the roughening transi-
tion temperature. The deficiency of spontaneous fluctuations in
interfacial shape begets an overly stiff response to fields or
constraints imposed by solutes. Lattice degrees of freedom serve
here only to coarsely determine static interfaces when solutes are
large enough to induce drying. Lack of capillary modes further

A B C

Fig. 1. Density fluctuations within a cubic probe volume, of size 12 Å × 12 Å × 12 Å, in bulk liquid water. (A) Cross-sectional snapshot from an atomistic MD
simulation, showing the probe volume v in blue. (B and C) Probability distribution PvðNÞ of the number of water molecules whose center lies in v. Results are shown
for atomistic simulations, for the LCW-inspired coarse-grained model of Eq. 5, for the conventional lattice gas of Eq. 1, and for the continuum estimate of Eq. 9.
Lattice models were simulated with two parameter sets consistent with the macroscopic surface tension of the air–water interface. The lower temperature case
ðT < TR parameters, e=T = 6, δ= 4 Å) does not support capillary fluctuations. The T > TR parameters ðe=T = 1.35, δ= 1.84 Å), by contrast, describe an interface whose
shape fluctuations are consistent with capillary wave theory. Results for Eq. 5 with the T < TR parameters, plotted in B, data from ref. 13.
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renders the surface tension of a lattice gas below the roughening
transition temperature anisotropic, introducing the possibility of
strong lattice artifacts. In this case of a nanometer-scale cubic
probe volume in bulk liquid, correspondence with the continuum
estimate suggests that such artifacts are not substantial.
The parameterization of Eq. 1 that we have advocated, which

does capture capillary fluctuations at the liquid–vapor interface,
significantly improves agreement between atomistic simulations
and the conventional lattice gas. Plotted in Fig. 1C, the T >TR
lattice gas result for PvðNÞmanifests low-density fluctuations that
are dramatically more probable than for the lattice gas with
T <TR. Agreement with atomistic simulations nonetheless re-
mains very poor, signaling a critical role for short-wavelength
modes even in the exponential tail of PvðNÞ.
The success achieved by the full coarse-grained model of Eq. 5

is thus not a transparent consequence of the limiting behaviors
motivating its form. Instead, a subtle cooperation of interfacial
fluctuations and thermodynamics, together with Gaussian den-
sity statistics at the molecular scale, underlies the equation’s
accurate prediction for PvðNÞ across the entire range of N.
LCW-inspired models based on the T <TR lattice gas are

much more difficult to reconcile with atomistic simulations.
When parameterized with T <TR, the unadorned form of Eq. 5
accurately predicts PvðNÞ only near its peak, failing dramatically
at low N, where interfacial fluctuations figure prominently (Fig.
S1). Ref. 13 outlines two strategies to address this shortcoming.
Smearing out discrete interfaces with a numerical interpolation
scheme improves predictions substantially but still fails to
achieve quantitative accuracy in the extreme tail of PvðNÞ.
Adding as well an estimate of unbalanced attractive forces pro-
duces near quantitative agreement (13). These elaborations,
however, require introducing interaction potentials and adjust-
able parameters that are not clearly specified by experimental
measurements (13). Our results show that greater accuracy can
be achieved much more simply, by using lattice gas parameters
that properly represent the statistics of capillary fluctuations.

Density Fluctuations at a Liquid–Vapor Interface. The interplay of
physical factors determining hydrophobic solvation can resolve
much differently in spatially heterogeneous environments. To ex-
plore basic effects of such nonuniformity, we have examined mi-
croscopic density fluctuations at the interface between air and
water. Specifically, we consider a cubic probe volume that straddles
the plane of a macroscopic phase boundary (i.e., the Gibbs dividing
surface between liquid and vapor). The overall shape of PvðNÞ in
this case is similar to the bulk result, featuring Gaussian statistics
near the peak and a more slowly decaying low-density tail. In this
case, however, the thermodynamic cost of evacuation is much
lower than in bulk, despite a similar value of hNi.
The LCW-inspired lattice model of Eq. 5 again matches at-

omistic simulation results very well, both near the mean of PvðNÞ
and far into the probability distribution’s low-density wing. Our
reduced description is therefore a promising tool for assessing
hydrophobic solvation near the liquid’s boundary.
Although the shape of PvðNÞ that we have determined for the

interfacial environment resembles that of bulk liquid, the underlying
structural fluctuations are quite different. This difference is made
clear by considering the simple lattice gas (in its higher-temperature
parameterization), whose prediction is also plotted in Fig. 2B. In
contrast to our bulk liquid results, neglecting short-wavelength
density fluctuations in this case effects only a modest suppression of
extreme low-density excursions; the shape and scale of PvðNÞ are in
fact captured well by the lattice gas with T >TR. Correspondingly, a
calculation based entirely on short-wavelength fluctuations, with a
static, flat interface, fails to capture the shape of PvðNÞ even near
the probability distribution’s peak (Fig. S1).
The long-wavelength density component thus dominates the

response of the LCW-inspired model in this spatially heteroge-

neous scenario, highlighting the key importance of capillary
fluctuations at the air–water interface. Evacuation of a probe
volume can be inexpensively achieved near a preexisting interface
by simply deforming the probe’s shape. Refs. 2 and 21 have also
pointed to interfacial deformation as a mechanism for extreme
density fluctuations near ideal hydrophobic surfaces and hydro-
phobic biological molecules.
The statistics of finer scale density variations have nonnegligible

quantitative impact on the predictions of Eq. 1 (e.g., reducing the
cavitation free energy by roughly 5 kBTÞ but do not qualitatively
shape the solvent response as in the bulk case. Underscoring the
role of surface shape fluctuations, the lower-temperature param-
eterization of the lattice gas, which lacks capillary waves, fails
profoundly to describe occupation statistics for the interfacial
probe volume, as shown in Fig. S1.

Association of a Hydrophobic Solute with the Interface. The occupa-
tion statistics discussed above hint at thermodynamic driving forces
that govern solvation of nonpolar species in interfacial environ-
ments. To make this connection explicit, we have computed the
excess chemical potential μexðzÞ of a spherical hydrophobe as a
function of the hydrophobe’s perpendicular displacement z from
the air–water interface (with z→∞ indicating bulk vapor and
z→ −∞ bulk liquid). Such interfacial free-energy profiles have

A

B

Fig. 2. Density fluctuations within a cubic probe volume that straddles the
interface between liquid water and its vapor. The probe volume, of size 12 Å ×
12 Å × 12 Å, is centered slightly within the liquid phase, 3.67 Å below the Gibbs
dividing surface. (A) Cross-sectional snapshot from an atomistic MD simulation,
showing the probe volume v in blue. (B) Probability distribution PvðNÞ of the
number of water molecules whose center lies in v. Results are shown for at-
omistic simulations, for the LCW-inspired coarse-grained model of Eq. 5 at co-
existence, and for the conventional lattice gas of Eq. 1 at coexistence. Lattice
models were simulated with T > TR parameters ðe=T = 1.35, δ= 1.84 Å) that yield
both the correct surface tension and capillary wave scaling.
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been determined from molecular simulations for a variety of solutes
(4, 5, 22, 23), including small ions, which can exhibit a surprising
tendency to adsorb to the liquid–vapor phase boundary (5). Al-
though charged solutes are distinct in important ways from
hydrophobes, the cost of creating solute-sized cavities has been
implicated as a key factor in their surface affinity (4, 5). As a simple
estimate of this cost, Levin et al. have assigned a fixed solvation
free-energy fdisp per unit of solvent volume displaced by the solute
(24). For an ideally flat interface, this approximation yields a free-
energy profile,

μðflatÞex ðzÞ= fdisp

�
1
2
−
z
�
3R2 − z2

�
4R3

�
,−R≤ z≤R, [10]

that is antisymmetric about z= 0 [once μexðzÞ has been shifted by
its value at z= 0�. This estimate asserts that the interface influences
solubility only for distances jzj smaller than the solute radius R. The
estimate clearly neglects the role of capillary fluctuations, which we
have argued can be the dominant mode of solvent response in
such scenarios.
Atomistic simulations show that Eq. 10 poorly approximates the

free-energy profile for an ideally hydrophobic nanometer-scale
solute. As shown in Fig. 3 for R= 5 Å, the atomistic potential of
mean force is highly asymmetric about z= 0. On the liquid side
ðz< 0Þ, the interface’s influence extends in distance z well beyond
the solute’s radius, with μexðzÞ deviating appreciably from μexð−∞Þ
out to nearly z=−2R. This extended range strongly implicates
variations in surface topography away from the microscopically flat
geometry assumed by Eq. 10.
Our LCW-inspired lattice model, by contrast, faithfully captures

these features of μexðzÞ (Fig. 3). The model’s minimal ingredients
thus appear sufficient to accurately describe the thermodynamics
of accommodating volume-excluding solutes near the liquid’s
boundary. Given the dominant role of interfacial softness in de-
termining PvðNÞ for the lattice model, an accounting of capillary
fluctuations appears essential for assessing the surface affinity of
nonpolar solutes. At the same time, these results suggest that a
volume-excluding hydrophobe may be a problematic reference
system for understanding interfacial solvation of charged species:
as a cavity near the interface is charged, strong response will be
induced not only in solvent polarization, as accounted by dielectric
continuum theory in ref. 24, but also in interfacial shape, an aspect
not addressed in existing theories for interfacial ion solvation.
Near the interface, an Ising lattice gas above the roughening
transition temperature accurately describes μexðzÞ, but because
the cavitation free energy is not well-described without in-
corporating Gaussian fluctuations, the bulk free energy of solva-
tion is not captured, as shown in Fig. S2.

Density Fluctuations Between Ideal Hydrophobic Plates. The calcula-
tions described so far demonstrate that a simple numerical
implementation of the LCW perspective can accurately describe
hydrophobic effects involving both microscopic structural response
and macroscopic bistability, featuring interfaces that may be pre-
existing or emergent. This success encourages use of such a model
to address more complicated and specific situations that arise in
modern biophysics and materials science [e.g., water flow in
nanotubes (25), gating of transmembrane ion channels (26), or the
development of tertiary and quaternary protein structure (27)]. In
each of these phenomena, large-scale atomistic simulations have
revealed intriguing functional roles for hydrophobic response as
solute configurations rearrange. Toward these frontier applica-
tions, we consider as a final example aqueous density fluctuations
in a confined hydrophobic environment.
When confined at the nanometer scale or below, water can ex-

hibit physical properties markedly distinct from those of the bulk
liquid (28). Interactions with the containing boundaries become a

critical consideration, with hydrophilic and hydrophobic walls
generating very different structural motifs and susceptibilities.
Hydrophobic walls are known to greatly enhance density fluctua-
tions, so that even weak external fields can induce nanoscale drying
(3). By poising water near a highly cooperative transition, such
constraints can thus be used to engineer switching under minor
perturbation, which in turn can sharply modulate functional be-
haviors like transport and self-assembly (1).
Using atomistic and coarse-grained simulations, we examined a

model confinement scenario featuring two ideally hydrophobic
parallel plates ð11δ× 3δ× 5δ in size), separated along the plates’
short dimension by a distance D, immersed in liquid water,
as depicted in Fig. 4A. As in our other examples, we focus on oc-
cupation statistics of a probe volume, here comprising the
space between the two plates (a volume of size 11δ× 5δ×DÞ. Re-
sults for PvðNÞ are plotted in Fig. 4 for two separations:
D= 3δ= 5.52 Å (Fig. 4B) and D= 5δ= 9.2 Å (Fig. 4C). For com-
parison, we also show the corresponding probability distributions for
a probe volume of the same size and shape placed in homogeneous
bulk water, obtained from atomistic simulations.
The presence of these hydrophobic plates is not sufficient to

induce drying for either value of D considered. The plates are not
sufficiently large to induce a vapor layer in their vicinity. The av-
erage density between plates is in fact greater than in bulk water,
because of the tendency of molecules in dense liquids to pack
tightly against hard walls. This modest elevation of hNi is re-
capitulated by the LCW-inspired lattice model. Such an increase in
local density is also captured by a purely Gaussian model that
considers only short-wavelength density fluctuations, underscoring
its origin in simple packing effects. The simple Gaussian model,
however, considerably overestimates the magnitude of this shift,
shown in Figs. S3 and S4—although these plates are not sufficiently
confining to evacuate the probe volume with high probability, they
do significantly enhance lattice fluctuations in their vicinity.
The hydrophobic plates have a much stronger impact on the tails

of PvðNÞ. For the smaller separation, D= 3δ, extreme low-den-
sity fluctuations are substantially more probable than in the bulk
case, reflecting stabilization of the dry state. Typical configu-
rations do not manifest this stabilization; it would instead be

Fig. 3. Excess chemical potential of a spherical hydrophobic solute as a
function of its perpendicular displacement z from the air–water interface.
z→∞ corresponds to bulk vapor, z→ −∞ to bulk liquid, and z= 0 to the
Gibbs dividing surface between the two coexisting phases. Data are shown
for atomistic simulations, for the LCW-inspired coarse-grained model of
Eq. 5 (with T > TR parameters e=T = 1.35, δ= 1.84 Å), and for the estimate in
Eq. 10 based on a completely quiescent interface. This solute excludes the
center of each water molecule from a sphere of radius R= 5 Å (as shown in
the inset schematic).
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apparent in the response to an external field that disfavors occu-
pation of the interplate region. Here, a field strength of just 0.5 T
per molecule would be sufficient to induce drying. This profound
impact of hydrophobic confinement on susceptibility to weak per-
turbations, despite negligible influence on typical fluctuations, has
been emphasized in previous work and explored in detail in the
context of protein complex formation (2, 27, 28).
These behaviors too are well described by the LCW-inspired

lattice model. The slope of ln  PvðNÞ in the low-density range,
which largely determines the susceptibilities discussed above, is
predicted especially accurately. The emergence of an inflection
point, a sign of incipient bistability as the plates approach, is
also accurately captured by the coarse-grained model. The
difficulty of describing solvent-mediated attraction between
hydrophobes using linear response theory has been detailed by
others (29, 30). For the nanoscale plates considered here, the
addition of fluctuating lattice degrees of freedom achieves this
goal with striking success.
As in the case of a probe volume of comparable size in bulk

solvent (Fig. 1), the conventional lattice gas model (with ni set to
1 inside the hydrophobic plates) does not give an accurate es-
timate of PvðNÞ over the probability distribution’s full range
(Figs. S5 and S6). At this subnanometer-length scale, Gaussian
fluctuations in the field δρðrÞ provide a mechanism for accessing
significant deviations from ¡N¿, whose weight is nonnegligible.
Increasing plate size should facilitate the formation of extended
interfaces, eventually making capillary fluctuations the only
relevant source of large deviations in N (as in the case of the
preexisting interface of Fig. 2).

Conclusions
Hydrophobic effects drive the formation of diverse assemblies in
biological and materials systems. Our results suggest that the
microscopic basis of these effects is thoroughly described by the
physical perspective put forth by Lum, Chandler, and Weeks
(31). Statistics of extreme fluctuations that determine solvation
thermodynamics can be captured with quantitative accuracy in a
lattice model based on the LCW perspective. Doing so, however,
requires careful attention to the softness of air–water interfaces,
a property lacking in many previous models.
The lattice model defined by Eq. 5 appears to be truly minimal

for this purpose. Omitting any of the models’ contributions de-
grades the close agreement with atomistic simulations that we have
demonstrated. Moreover, the model’s parameters are highly con-
strained by basic experimental observations, namely surface tension,
molecular pair correlations, and the spectrum of long-wavelength
capillary waves.

Notably absent in our model are several ingredients introduced in
previous studies to improve agreement with detailed molecular
simulations. We have not introduced explicit coupling between
the rapidly and slowly varying components of the density field
[i.e., between the lattice variables ni and the Gaussian field δρðrÞ�.
Others have motivated such coupling from the form of self-con-
sistent equations in a mean-field treatment of the slowly varying
density component (31), which manifest unbalanced attractive
forces attributable to the rapidly varying component. Our omis-
sion does not, however, imply a lack of unbalanced attraction in
the model of Eq. 5. Direct interactions among the lattice variables
ni in Eq. 1 are of course sufficient to stabilize interfaces, the pri-
mary and essential role of unbalanced forces in the mean field
theories of refs. 31 and 32. Rather, Eq. 5 neglects the specific
source of unbalanced attraction attributable to short-wavelength
structure, a coupling whose form and strength are not transparent
for an associated liquid like water (32). Nor does our omission
imply a lack of coupling between ni and δρðrÞ. The manipulations
leading to Eq. 5 permit short-wavelength density fluctuations only
in regions that are liquid-like ðni = 1Þ. By correlating the statistics
of δρðrÞ with lattice fluctuations that support phase coexistence,
this constraint effects a potent but implicit interaction across
length scales. Finally, in LCW-inspired lattice models, explicit
length-scale coupling has the side effect of altering statistics of
Gaussian density fluctuations in the vicinity of inhomogeneous
lattice configurations. According to molecular simulations, short-
wavelength fluctuations in liquid regions are in fact quite robust
against such heterogeneity, particularly when liquid domains are
identified with sensitivity to interfacial fluctuations (21, 33).
The lattice gas on which our model is built includes only nearest

neighbor interactions. As emphasized in ref. 13, the ground state of
this model possesses unphysical degeneracies in the shape of closed,
convex interfaces. These degeneracies can be removed by in-
troducing lattice interactions between nonneighboring cells. In a
lattice gas below its roughening transition temperature, the impact
of these additional interactions is dramatic, because the interactions
suppress the only affordable mode of interfacial shape variation.
Our studies of lattice gases above the roughening transition tem-
perature suggest that such degeneracies are much less important in
the presence of natural capillary fluctuations.
Such additional couplings may be needed to further improve

quantitative predictions or to address more complicated scenarios.
These goals may also require attention to molecular details that
have not yet been incorporated into LCW-inspired models, for
instance, concerning the geometry of hydrogen bonds, coordination
statistics, or the specific form of interaction potentials. Pratt has
made significant advances toward understanding and quantifying

A B C

Fig. 4. Statistics of aqueous density fluctuations between nanometer-scale hydrophobic plates immersed in the liquid phase. (A) Cross-sectional snapshot
from an atomistic MD simulation, showing the volume-excluding hydrophobic plates in blue. (B and C) Probability distributions PvðNÞ of the number of water
molecules whose center lies between the two plates. Results are shown for atomistic simulations and for the LCW-inspired coarse-grained model of Eq. 5 (with
T > TR parameters e=T = 1.35, δ= 1.84 Å). We also plot results for a probe volume of equivalent size in bulk water, obtained from atomistic simulations. The
plates are cuboids that exclude the center of each water molecule from a volume with dimensions 20.24 Å × 5.52 Å × 9.2 Å and are separated along their short
dimension by a distance D. Plate separations were fixed at D=5.52 Å in the simulations of B and at D= 9.2 Å for C.
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the role of these effects in hydrophobicity (29). Incorporating these
advances into a lattice-based model poses significant challenges.
In addition to helping establish a conceptual foundation for

complex hydrophobic phenomena, our studies advance the more
pragmatic goal of faithfully simulating systems that comprise very
large numbers of water molecules. This challenge limits, for ex-
ample, the scale of biomolecular problems that can be examined
by simulation without reducing the description of solvent fluc-
tuations to a gross caricature. For the systems we have discussed,
our coarse-grained approach reduces the computational cost
of representing explicit solvent fluctuations by more than two
orders of magnitude (relative to atomistic simulations), while
preserving microscopic realism with surprising accuracy. This
advantage should become even more significant for very large
systems, whose computational burden scales exactly linearly in
Eq. 5. The model we have described could thus enable the study
of problems that currently lie outside of the reach of atomisti-
cally detailed simulations.

Methods
All atomistic simulations included 6,912 rigid water molecules, interacting
through the SPC/E potential (34), in a periodically replicated simulation cell
with dimensions 75 Å × 75 Å × 100 Å, and held at temperature 300 K using a
Nosé–Hoover thermostat (35, 36). These conditions enforce phase equilibrium,
with coexisting slabs of liquid and vapor as in ref. 21. Probe volumes were
positioned at least 10 Å away from the resulting liquid–vapor interface, except
where indicated otherwise. Electrostatic interactions were summed using the

particle mesh Ewald algorithm (37). Intramolecular constraints were imposed
using the SHAKE algorithm (38). MD trajectories were advanced in time using
the LAMMPS software package (39). Probability distributions for occupation
statistics of a probe volume were determined with umbrella sampling using
the indirect umbrella sampling (INDUS) technique (21).

Coarse-grained simulations were performed with an in-house software
package that is available upon request. These systems comprised 30× 30× 30
lattice cells, periodically replicated in each direction. Probability distributions
of the lattice-occupation state within a probe volume were determined by
straightforward umbrella sampling. Statistics of the total density (including
short-wavelength fluctuations) within such probe volumes were then
obtained using the method outlined in ref. 13. Simulations with spherical
solutes required numerical calculation of the overlap between cubic lattice
cells and the solute’s excluded volume. These overlap volumes were com-
puted either with Monte Carlo integration or with analytical expressions
detailed in the Supporting Information. Although complicated, these ex-
pressions significantly reduce computation time for solutes that move con-
tinuously in space.
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Integrating Out Gaussian Fluctuations in the Presence of
Multiple Ideal Hydrophobes
The presence of a solvent-excluding volume v introduces a
constraint on the total solvent density field,

ρlnðrÞ+ δρðrÞ= 0, [S1]

at each point r∈ v. Integrating out small-wavelength Gaussian fluc-
tuations δρðrÞ in the presence of this constraint requires evaluating

Zv =
Z

DδρðrÞe−βHs
Y
r∈v

δðρlnðrÞ+ δρðrÞÞ. [S2]

The product of delta functions enforces the constraint in Eq. S1,
and Hs is the unconstrained Hamiltonian for δρðrÞ,

βHs =
1
2

Z
r

Z
r′
δρðrÞχ−1ðr, r′Þδρðr′Þ.

A formal expression for Zv can be easily derived, but numerical
evaluation is impractical because of the infinite product of delta
functions. For this reason, prior work on coarse-graining water has
replaced the pointwise constraint in Eq. S2 by a single con-
straint on the average density in v, as in Eq. 4. The resulting
expression for Zv is much more manageable and has been ap-
plied with great success to systems containing only a single
solute with a simple compact geometry. However, for systems
with many independently moving solutes that may be separated
by large distances, the average constraint in Eq. 4 introduces
spurious correlations between solutes that never vanish. If v is
the union of m nonintersecting regions,

v= vð1Þ∪ vð2Þ∪ . . . ∪ vðmÞ,

a simple solution is to constrain the average density in each region
vðαÞ separately (i.e., to apply the constraint expressed in Eq. 4
separately to each solute’s excluded volume). The infinite prod-
uct of delta functions in Eq. S2 then becomes a product of m
delta functions,

Y
r∈v

δðρlnðrÞ+ δρðrÞÞ→
Ym
α=1

δ

�Z
r∈vðαÞ

ρlnðrÞ+ δρðrÞ
�
.

Using the Fourier representation of the delta function, the inte-
gral in Eq. S2 becomes

Z
DδρðrÞe−βHs

Ym
α=1

Z
dψα

2π
  exp

�
−iψα

Z
r∈vðαÞ

ρlnðrÞ+ δρðrÞ
�
.

Defining

Nα =
Z
r∈vðαÞ

ρlnðrÞ and ΦðrÞ=
�
iψα, r∈ vðαÞ,
0, else,

and rearranging the order of the integrals, we obtain

Z  Ym
α=1

dψα

2π
  e−iNαψα

!Z
DδρðrÞexp

�
−βHs −

Z
r
ΦðrÞδρðrÞ

�
.

Evaluating the inner integral over δρðrÞ results in

Zv =Z0

Z  Ym
α=1

dψα

2π
  e−iNαψα

!
exp
�
1
2

Z
r

Z
r′
ΦðrÞχðr, r′ÞΦðr′Þ

�
.

The argument of the rightmost exponent evaluates to

−
1
2
ð2πÞ2

Xm
α=1

Xm
β=1

ψαðχinÞα,βψβ,

where ðχinÞα,β is given by the double integral

ðχinÞα,β =
Z
r∈vðαÞ

Z
r′∈vðβÞ

ΘðrÞχðr, r′ÞΘðr′Þ.

With this, Zv can be expressed compactly in matrix notation,

Zv =Z0

Z  Ym
α=1

dψα

2π

!
exp
�
−
1
2
ψ⊤χinψ − iN

⊤
ψ

�
,

where ψ is a column vector with elements ψα, N is a column
vector with elements Nα, and χin is an m×m matrix with ele-
ments ðχinÞα,β. This integral is easily evaluated to give

Zv =Z0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πχinÞ
p exp

�
−
1
2
N

⊤
χ−1in N

�
.

The free-energetic contribution of the small-wavelength field, rel-
ative to the unconstrained case, is then given by

Fv −F0 =−T   ln
�
Zv

Z0

�
=
T
2

�
lnðdetð2πχinÞÞ+N

⊤
χ−1in N

�
, [S3]

which are the final two terms in Eq. 5. For two solutes α and β,
the off-diagonal matrix element ðχinÞα,β gives the coupling be-
tween Gaussian fluctuations in regions vðαÞ and vðβÞ. If the solutes
are separated by much more than the correlation length of water,
this term vanishes. In the limit of infinite separation between all
solutes, χin becomes a diagonal matrix and the free energy in Eq.
S3 reduces to a simple sum of uncoupled terms,

Fv −F0 =
T
2

Xm
α=1

 
ln
�
2πðχinÞα,α

�
+

N2
α

ðχinÞα,α

!
.

Exact Expression for the Overlap Between the Lattice and
Spherical Solute
The Hamiltonian given in Eq. 5 requires that we compute vi, the
overlap between the solute’s excluded volume and the cubic
lattice cells. The overlap can be estimated accurately using
Monte Carlo integration when the solute does not move over the
course of the simulation. However, it is also possible to compute
the overlap analytically, a pragmatic approach when the solute is
mobile. This strategy improves accuracy and saves significant
computation.
To efficiently compute the overlap between cells of the lattice

and spherical objects, we derived an exact formula using ordinary
calculus. There are eight distinct cases to consider, each with
several subcases. The calculation is a tedious, but straightforward,
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exercise in enumerating the cases. There are two main, equiva-
lent scenarios. First, if the cubic region lies entirely within the
solute, then the overlap is simply δ3. Otherwise, the diagonal
of the cubic cell, which we refer to as the line segment con-
necting ðxl, yl, zlÞ to ðxu, yu, zuÞ throughout, does not lie entirely
within the sphere. Every subcase can be rotated and decom-
posed into one of these two subcases. As such, knowledge of
the following specific case is sufficient to compute the overlap
in general.
Consider a sphere of radius R centered at the origin. We

will work through the case that R> δ, where δ is the coarse-
graining length (the side length of the cubes that form the
lattice). The overlap between the sphere and a cubic lattice
cell can always be decomposed into contributions from each
of the eight octants of the sphere. Without loss of general-
ity, we will select the first octant x, y, z> 0 and assume that
the diagonal of the cubic lattice cell lies entirely within the
octant.
With this particular case fully specified, we now carry out the

integral

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−z2−y2

p

0

Z ffiffiffiffiffiffiffiffiffi
R2−z2

p

0

Z R

0
dx  dy  dz  −

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−z2−y2

p

xl

Z ffiffiffiffiffiffiffiffiffi
R2−z2

p

yl

Z R

zl
dx  dy  dz.

[S4]

This expression is valid when xu, yu, zu >R. If this is not the case,
then additional integrals that account for the volume of the sphere
in the first octant that lies outside the cubic cell must be subtracted
away. These additional integrals have the same form as the integral
in Eq. S4.
The integral specifying the overlap can be calculated analyti-

cally. We have not been able to simplify the expression into a
convenient form, but the analytical result can easily be used within
computer code.
The simplified expression for Eq. S4 is

1
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3
2  tan−1

0
B@ xlyl
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Fig. S1. Probability of finding N molecules in a probe volume situated at a liquid–vapor interface. Here, we show the Gaussian part of the Hamiltonian given
in Eq. 5 plotted alongside results from atomistic simulations, the coarse-grained model of Eq. 5, a rough lattice gas, and a cold lattice gas at coexistence.

Fig. S2. Excess chemical potential of a spherical hydrophobic solute as a function of its perpendicular displacement z from the air–water interface. z→∞
corresponds to bulk vapor, z→ −∞ to bulk liquid, and z= 0 to the Gibbs dividing surface between the two coexisting phases. Data are shown for atomistic
simulations, for the LCW-inspired coarse-grained model of Eq. 5 (with T > TR parameters e=T = 1.35, δ= 1.84 Å), and for the estimate in Eq. 10 based on a
completely quiescent interface. This solute excludes the center of each water molecule from a sphere of radius R=5 Å (as shown in the inset schematic). In
addition, we show data for an Ising lattice gas with T > TR. Because it is not possible to implement truly spherical solute in the simple lattice gas system, we
used a cubic solute with side length 7.24 Å, so that the surface area is equal to that of the R= 5 Å sphere.
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Fig. S3. Probability of finding N molecules in a probe volume between two ideal, 20.24 Å × 5.52 Å × 9.2 Å hydrophobic plates, separated by a distance of 5.52 Å.
Here, we show the Gaussian part of the Hamiltonian given in Eq. 5 plotted alongside results from atomistic simulation, the coarse-grained model of Eq. 5, and the
bulk PvðNÞ for a probe volume of the same size as the region between the walls. Note that the Gaussian part of the Hamiltonian overcompensates for the shift
toward higher density.

Fig. S4. Probability of finding Nmolecules in a probe volume between two ideal, 20.24 Å × 5.52 Å × 9.2 Å hydrophobic plates, separated by a distance of 9.2 Å.
Here, we show the Gaussian part of the Hamiltonian given in Eq. 5 plotted alongside the results from atomistic simulation, the coarse-grained model of Eq. 5,
and the bulk PvðNÞ for a probe volume of the same size as the region between the walls. Note that the Gaussian part of the Hamiltonian overcompensates for
the shift toward higher density.
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Fig. S5. Probability of finding N molecules in a probe volume between two ideal, 20.24 Å × 5.52 Å × 9.2 Å hydrophobic plates, separated by a distance of 5.52 Å.
Here, we show the prediction for an Ising lattice gas above the roughening transition temperature in which the constraint the cells occupied by the walls remain
empty is imposed.

Fig. S6. Probability of finding Nmolecules in a probe volume between two ideal, 20.24 Å × 5.52 Å × 9.2 Å hydrophobic plates, separated by a distance of 9.2 Å.
Here, we show the prediction for an Ising lattice gas above the roughening transition temperature in which the constraint the cells occupied by the walls
remain empty is imposed.
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