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Abstract

Neural networks, a central tool in machine learning, have demonstrated remark-
able, high fidelity performance on image recognition and classification tasks.
These successes evince an ability to accurately represent high-dimensional func-
tions, but rigorous results about the approximation error of neural networks after
training are few. Here we establish conditions for global convergence of the
standard optimization algorithm used in machine learning applications, stochas-
tic gradient descent (SGD), and quantifying the scaling of its error with the size
of the network. This is done by reinterpreting SGD as the evolution of a particle
system with interactions governed by a potential related to the objective or “loss”
function used to train the network. We show that, when the number n of units is
large, the empirical distribution of the particles descends on a convex landscape
towards the global minimum at a rate independent of n, with a resulting approxi-
mation error that universally scales as O.n�1/. These properties are established
in the form of a law of large numbers and a central limit theorem for the empir-
ical distribution. Our analysis also quantifies the scale and nature of the noise
introduced by SGD and provides guidelines for the step size and batch size to use
when training a neural network. We illustrate our findings on examples in which
we train neural networks to learn the energy function of the continuous 3-spin
model on the sphere. The approximation error scales as our analysis predicts in
as high a dimension as d D 25. © 2022 Courant Institute of Mathematics and
Wiley Periodicals LLC.
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1 Introduction
While both speech recognition and image classification remain active areas of

research, extraordinary progress has been made on both problems—ones that ap-
peared intractable only a decade ago [24]. By harvesting the power of neural net-
works while simultaneously benefiting from advances in computational hardware,
complex tasks such as automatic language translation are now routinely performed
by computers with a high degree of reliability. The underlying explanation for
these significant advances seems to be related to the expressive power of neural
networks, and their ability to accurately represent high-dimensional functions.

These successes open exciting possibilities in applied and computational math-
ematics that are only beginning to be explored [7–9,17,21,30,36]. Any numerical
calculation that uses a given function begins with a finite-dimensional approxima-
tion of that function. Because standard approximations, e.g., Galerkin truncations
or finite element decompositions, suffer from the curse of dimensionality; it is
nearly impossible to scale such methods to large dimensions d . Fundamentally,
these representations are linear combinations of basis functions. The issue arises
because the dimensionality of the representation is equal to that of the truncation.
Neural networks, on the other hand, are highly nonlinear in their adjusting param-
eters. As a result, the effective dimensionality of a neural network is much higher
than its total number of parameters, which may explain the impressive function ap-
proximation capabilities observed in practice, even when d is large. Characterizing
this observation with analysis is nontrivial though, precisely because the represen-
tation of a function by a neural network is nonlinear in its parameters. This renders
many of the standard tools of numerical analysis useless, since they are in large
part based on linear algebra.

The significant achievements of machine learning have inspired many efforts to
provide theoretical justification to a vast and growing body of empirical knowl-
edge. At the core of our understanding of the approximation properties of neural
networks are the well-known “universal approximation theorems” that specify the
conditions under which a neural network can represent a target function with arbi-
trary accuracy [6, 14, 28]. Despite the power of these results, they do not indicate
how the network parameters should be optimized to achieve maximal accuracy in
practice [11]. In particular, these theorems do not provide general guidance on
how the error of the network scales with its size at the end of training. Several
recent papers have focused on the analysis of the shape and properties of the ob-
jective or “loss” function landscape [5, 13, 29]. These studies have mainly focused
on the fine features of this landscape, trying to understand how nonconvex it is and
making analogies with glassy landscapes. Additionally, some analysis has been
performed in cases where the number of parameters vastly exceeds the amount of
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training data, a setting that guarantees convexity and dramatically simplifies the
landscape. Further studies have examined the dynamics of the parameters on the
loss landscape to understand the properties of optimization procedures based on
stochastic gradient descent.

In this paper, we adopt a different perspective which enables powerful tools for
analysis. Similar to what was recently proposed in [12,27,33], we view the param-
eters in the network as particles and the loss function as a potential that dictates
the interaction between them. Correspondingly, training the network can be in-
terpreted as the evolution of the particles in this interaction potential. Using the
interchangeability of the n interacting particles/parameters in the neural represen-
tation, we focus on their empirical distribution and analyze its properties when n

is large using standard limit theorems [22, 23, 31, 32]. This viewpoint allows us to
bypass many of the difficulties that arise with approaches that attempt to study the
dynamics of the individual particles. In particular:

(1) We derive an evolution equation for the empirical distribution of the par-
ticles, and show that it evolves by gradient descent in the 2-Wasserstein
metric on a convex energy landscape. This observation allows us to assert
that convergence towards equilibrium of the empirical distribution occurs
on a time scale that is independent of n to leading order—similar results
were obtained in [12, 27, 33]. The results are obtained in the form of law
of large numbers (LLN) for the empirical distribution of the parameters.
As a consequence, we rederive the universal approximation theorem and
establish that it can be realized dynamically.

(2) We quantify the fluctuations of the empirical distribution at finite n above
its limit. We show that these fluctuations are of order O.n�1=2/ and con-
trolled at all t < 1. In addition, we establish conditions under which
these fluctuations heal and become O.n�1/ as t ! 1. These results rely
on a central limit theorem (CLT) and indicate that the neural network ap-
proximation error is universal and scales as O.n�1/ as n ! 1 in any
d .

These results are established first in situations where gradient descent (GD) on the
loss function is used to optimize or “train” the parameters in the network, and then
shown to also apply in the context of stochastic gradient descent (SGD). In the
latter case, our analysis sheds light on the nature of the noise introduced in SGD,
and indicates how the time step and the batch size should be scaled to achieve
the optimal error. We briefly elaborate on these statements below, first precisely
formulating the problem.
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1.1 Problem setup
Given a function f W �! R defined on the closed manifold � � R

d , consider
its approximation by a neural network of the form

(1.1) f .n/.x/ D 1

n

nX
iD1

ci y'.x; ´i /

where n 2 N, .ci ; ´i / 2 D � R� yD are parameters to be learned for i D 1; : : : ; n,
and ' W ��D ! R is some function—we assume throughout this paper that yD is a
closed manifold in RN . The function y' is usually referred to as the “nonlinearity”
or “unit” and n as the width of the network. To simplify notation, we use � D
.c; ´/ 2 D and '.x;�/ D c y'.x; ´/ in terms of which (1.1) reads

(1.2) f .n/.x/ D 1

n

nX
iD1

'.x;� i /:

Many models used in machine learning can be cast in the form (1.1)–(1.2):
� Radial basis function networks. In this case yD � � and y'.x; ´/ �
�.x � ´/ where � is some kernel, for example, that of a radial function
such as

�.x/ D exp
��1

2
�jxj2�

where � > 0 is a fixed constant.
� Single hidden layer neural networks. In this case, yD � S

d and y'.x; ´/ D
y'.x; a; b/ with, e.g., a 2 Sd�1, b 2 ��1; 1�, and

'.x; a; b/ D h.a � x C b/

where h W R ! R is, e.g., a sigmoid function h.´/ D 1=.1 C e�´/ or a
rectified linear unit (ReLU) h.´/ D max.´; 0/.

� Iterated neural networks. These are structurally similar to single hidden
layer neural networks. For example, to construct a two-layer network we
take h as above and for m 2 N, m � d define h.1/ W Rm ! R

m such that

h
.1/
j .v/ D h.vj /; v D .v1; : : : ; vm/ 2 Rm; j D 1; : : : ; m

then set

f .n/.x/ D 1

n

nX
iD1

cih
�
a
.0/
i � h.1/

�
A
.1/
i x C b

.1/
i

�
C b

.0/
i

�

where a.0/i 2 R
m, b.0/i 2 R, A.1/

i 2 R
m�d , b.1/i 2 R

m, i D 1; : : : ; n.
Therefore here we have ´ D .a.0/; b.0/; A.1/;b.1// 2 yD � R

mC1Cm�dCm

(where with a slight abuse of notation we view the matrix A.1/ as having a
vector in Rm�d ). Three-layer networks can be constructed similarly. Note
that our results apply to deep neural networks when their final layer grows
large, with fixed depth.
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To measure the discrepancy between the target function f and its neural network
approximation f .n/, we need to introduce a distance, or loss function, between f
and f .n/. A natural candidate often used in practice is

(1.3) L�f .n/� D 1

2

Z
�

��f .x/ � f .n/.x/
��2�.dx/ D 1

2
E�

��f � f .n/
��2

where �, the data distribution, is some positive measure on � such that �.�/ <1
(for example, the Hausdorff measure on �, which we will denote by dx). We can
view L�f .n/� as an objective function for f� igniD1:

(1.4) L�f .n/� D Cf � 1

n

nX
iD1

F.� i /C 1

2n2

nX
i;jD1

K.� i ;�j /

where Cf D 1
2
E� jf j2, and we defined

(1.5) F.�/ D c yF .´/; K.�;� 0/ D cc0 yK.´; ´0/

with

(1.6)
yF .´/ D E� �f y'.�; ´/�;

yK.´; ´0/ D E� �y'.�; ´/y'.�; ´0/� � yK.´0; ´/:

Trying to minimize (1.4) over f� igniD1 leads to difficulties, however, since this is
potentially (and presumably) a nonconvex optimization problem, which has local
minimizers. In particular, if we perform training by making f� igniD1 evolve via
gradient descent (GD) over the loss, i.e., if we use

(1.7) P�i D rF.�i / � 1

n

nX
jD1

rK.�i ;�j /;

there is no guarantee a priori that these parameters will reach the global minimum
of the loss or even a local minimum with a value for the loss that is close to that of
the global minimum. As a result, determining the value of (1.3) after training (and
its scaling with n, say) is nontrivial. It is therefore natural to ask:

How accurate is the approximation (1.1)–(1.2) if we optimize f� igniD1
by applying the algorithms commonly used in machine learning?

This is the main question we investigate in the present paper.

1.2 Main results and organization
We will consider the evolution in time of the representation

(1.8) f
.n/
t D 1

n

nX
iD1

'. � ;� i .t//

and study the behavior of this function for large n and large t . To this end we use
tools from interacting particle systems, and also build on known results about the
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nature of the loss function (1.4) in the limit as n ! 1—these results are recalled
in Section 2.

In Section 3 we consider the situation where � i .t/ are the solution of the GD
flow (1.7)—as explained below, this is somewhat of an idealized situation since we
typically must work with the empirical loss rather than the exact one, but it is more
easily amenable to analysis. By looking at the evolution of the empirical distri-
bution of f� i .t/gniD1 rather than that of the parameters themselves, we establish a
law of large numbers (LLN) for f .n/

t , namely that limn!1 f
.n/
t D ft , where ft

evolves as

(1.9) @tft .x/ D �
Z
�

Mt .x;x
0/
�
ft .x

0/ � f .x0/
�
�.dx0/;

where f is the target function and Mt .x;x
0/ a positive semidefinite kernel whose

form is explicit—see Proposition 3.3. The evolution equation (1.9) can be inter-
preted as GD for ft over the loss in some metric inherited from the 2-Wasserstein
metric, and in Proposition 3.5 we show the flow converges to the target function,
i.e.,

(1.10) lim
t!1

ft D lim
t!1

lim
n!1

f
.n/
t D f:

We also establish that the limit in n and t commute. Regarding the scaling of the
fluctuations above ft when n is finite, in Proposition 3.7 we establish a central
limit theorem (CLT) that asserts that these fluctuations are of size O.n�1=2/, i.e.,
n1=2.f

.n/
t � ft / has a limit in law as n ! 1. In addition, in Proposition 3.8 we

show that these fluctuations are controlled at all times, and in Proposition 3.9 that
under certain conditions they heal as t !1 in the sense that

(1.11) f .n/
an

D f CO.n�1/ as n!1 with an= logn!1:

In Section 4 we analyze the typical situation in which it is not possible to calcu-
late (1.3) or (1.6) exactly. Rather, we must approximate these expectations using a
“training set”; i.e., a set of points fxpgPpD1 distributed according to � on which f
is known, so that instead of L�f .n/� we must use

(1.12) LP �f .n/� D 1

P

PX
pD1

��f .xp/ � f .n/.xp/
��2

and instead of yF and yK

yFP .´/ D 1

P

PX
pD1

f .xp/y'.xp; ´/;

yKP .´; ´
0/ D 1

P

PX
pD1

y'.xp; ´/y'.xp; ´0/:
(1.13)
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If in (1.7) we replace F.�/ and K.�;� 0/ by their empirical estimates over a sub-
set of the training points FP .�/ D c yFP .´/ and KP .�;�

0/ D cc0 yKP .´; ´
0/, we

arrive at what is referred to as stochastic gradient descent (SGD)—the method of
choice to train neural networks. We focus on situations in which we can redraw the
training set as often as we need, namely, at every step during the learning process,
an algorithm called online learning. In this case, in the limit as the optimization
time step �t used in SGD tends to 0, SGD becomes asymptotically equivalent
to an SDE whose drift terms coincide with those of GD but with multiplicative
noise terms added. In this context, we establish that (1.9) and (1.10) also hold if
we choose the size P of the batch used in (1.13) at every SGD step such that as
P D O.n2�/ with � > 0. Regarding the scaling of the fluctuations, if we set
� 2 .0; 1/, we lose accuracy and (1.11) is replaced by

(1.14) f .n/
an

D f CO.n��/ as n!1 with an= logn!1:

However if � � 1, we get (1.11) back (meaning also that there is no advantage in
taking � bigger than 1). These results are stated in Propositions 4.3 and 4.4.

In Section 5 we illustrate these results, using a spherical p-spin model with
p D 3 as test function to represent with a neural network. We show that the
network accurately approximates this function in up to d D 25 dimensions, with
a scaling of the error consistent with the results established in Sections 3 and 4.
These results are obtained using both a radial basis function network, and a single
hidden layer network using sigmoid functions.

Concluding remarks are made in Section 6, and in the Appendix we establish
a finite-temperature variant (Langevin dynamics) of (1.11), which applies when
additive noise terms are added in the GD equations (1.7). This result reads

(1.15) lim
T!�1

f
.n/
t D f C n�1 zft C o.n�1/ with zft D ��1�� C ��1=2z�t

where T is the time at which we initiate the training. Here � > 0 is a parameter
playing the role of inverse temperature, �� W � ! R is some given (nonrandom)
function and z�t W � ! R is a Gaussian process with mean zero and covariance
E�z�t .x/z�t .x0/� / �.x � x0/. Note that (1.15) gives (1.11) back after quenching
(i.e., by sending � !1). The result in (1.15) is stated in Proposition A.5

As we have emphasized, our approach has strong ties with the statistical me-
chanics of systems of large numbers of interacting particles. Our main aim here is
to introduce a framework showing how results and concepts developed in this con-
text are useful to address questions in machine learning. Conversely, we seek to
illustrate that ML provides new mathematical questions about an interesting class
of particle systems. With this in mind, we adopt a presentation style that relies on
formal asymptotic arguments to derive our results, though we are confident that
providing rigorous proofs to our propositions is achievable. To a certain extent,
this program was already started in [12, 27, 33].
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2 Functional Formulation of the Learning Problem
As discussed in Bach [4], it is useful to give conditions under which (1.1) has

a limit as n ! 1, for two main reasons: First it shows which functions can be
represented as in (1.1) if we allow the number of units n to grow to infinity, and
second, while the loss function (1.3) may be nonconvex for f� igniD1, the limiting
functional for the parameter distribution is convex.

2.1 Universal approximation theorem
Consider the space F1 of all functions that can be represented as

(2.1) f D
Z
yD
y'. � ; ´/.d´/;

where  is some (signed) Radon measure on D with finite total variation (L1-
norm), j jTV D R

yD
j.d´/j < 1: we will denote the space of these Radon mea-

sures by M. yD/ and that of probability measures by MC. yD/. The space F1 is
important in our context, since any f 2 F1 can be realized as

(2.2) f D lim
n!1

1

n

nX
iD1

ci y'. � ; j́ /

by drawing fci ; ´igi2N as follows. Start from the Jordan decomposition for  [10],

(2.3)  D C � �;

where C and � are positive measures with supp C [ supp � D supp  and
supp C \ supp � D ¿. Using this decomposition, we can draw ´i ’s inde-
pendently from .C C �/=j jTV 2 MC. yD/, where j jTV D R

yD
.C.d´/ C

�.d´// < 1 , and set ci D Cj jTV if ´i 2 supp C and ci D �j jTV if
´i 2 supp �. By the law of large numbers we then have

(2.4) n D 1

n

nX
iD1

ci�´i *  as n!1:

which implies (2.2). We can also use the central limit theorem to get an approxi-
mation error at finite n, a calculation we carry out in Section 3.4.

Since the space F1 depends on the choice of unit y', to characterize it we make
the following assumptions:

ASSUMPTION 2.1. Both the input space � and the feature space yD are closed
(i.e., compact with no boundaries) smooth Riemannian manifolds. The unit is con-
tinuously differentiable in ´, i.e., 8x 2 �, y'.x; �/ 2 C 1. yD/.

ASSUMPTION 2.2 (Discriminating unit). The unit satisfies

(2.5)
Z
�

g.x/y'.x; �/�.dx/ D 0 a.e. in yD ) g D 0 a.e. in �.
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While ReLU is not strictly differentiable at x D 0, the uniqueness of the gradient
flow can be ensured through the use of subgradients [12], The differentiability of
y' in ´ is required to guarantee uniqueness of the GD flow.

THEOREM 2.3 (Universal approximation theorem [6, 14, 28]). Under Assump-
tions 2.1 and 2.2, F1 is a dense subspace of L2.�; �/; i.e., given any f 2
L2.�; �/ and � > 0, there exists � 2M. yD/ such that j�jTV <1 and

(2.6) f � D
Z
yD
y'. � ; ´/�.d´/ 2 F1

satisfies

(2.7) kf � f �kL2.�;�/ � �:

A similar theorem was originally stated in [14]. Since its proof is elementary let us
reproduce it here:

PROOF. The space F1 is a linear subspace of L2.�; �/ since, if

f D
Z
yD
y'. � ; ´/.d´/ 2 F1;

kf k2
L2.�;�/

D
Z
�

�Z
yD
y'.x; ´/.d´/

�2
�.dx/

D
Z
yD� yD

yK.´; ´0/.d´/.d´0/

� k yKk1j j2TV <1
where we used k yKk1 D sup

.´;´0/2 yD� yD
j yK.´; ´0/j < 1, which follows from

Assumption 2.1. To show that F1 is dense in L2.�; �/, we proceed by contradic-
tion. Assuming that F1 is not dense, by the Hahn-Banach theorem, there exists a
nonzero linear functional L W L2.�; �/ ! R such that Lf D 0 for all f 2 F1.
By the Riesz representation theorem, the action of L on f can be represented as
the inner product in L2.�; �/ between f and some g 2 L2.�; �/; i.e., there must
exist g 6D 0 such that for all f D R

yD
y'. � ; ´/.d´/ 2 F1 (i.e., all  2 M. yD/ with

finite variation)

0 D
Z
�

g.x/

�Z
yD
y'.x; ´/.d´/

�
�.dx/

D
Z
yD

�Z
�

g.x/y'.x; ´/�.dx/
�
.d´/;

This requires that

0 D
Z
�

g.x/y'.x; �/�.dx/ a.e. in yD:

which, by Assumption 2.2, implies that g D 0 a.e. in �, a contradiction. □
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From now on, we will make the following:

ASSUMPTION 2.4. The target function is representable by the network, i.e., f 2
F1.

This means that we can take f D f � in Theorem 2.3.

2.2 Convexification at distributional level
Another advantage of taking the n ! 1 limit of (1.1) is that it turns (1.4) into

a quadratic objective function for  :

L�
R
D y'. � ; ´/.d´/�
D Cf �

Z
yD

yF .´/.d´/C 1

2

Z
yD� yD

yK.´; ´0/.d´/.d´0/
(2.8)

This means that minimizing (2.8) over  rather than (1.4) over f� igniD1 is concep-
tually simpler. In particular, any minimizer � of (2.8) solves the linear Euler-
Lagrange equation:

(2.9) 8´ 2 yD W yF .´/ D
Z
yD

yK.´; ´0/�.d´0/;

and the loss evaluated on any � has value zero. Indeed, using the definitions of yF
and yK in (1.6), (2.9) can be written as

(2.10)
Z
�

y'.x; ´/
�
f .x/ �

Z
yD
y'.x; ´0/�.d´0/

�
; �.dx/ D 0

which, by Assumptions 2.2 and 2.4, has a solution such that f D R
yD
y'. � ; ´/�.d´/,

and, as a result, the loss evaluated on
R
yD
y'. � ; ´/�.d´/ is zero.

Of course, the results above are not necessarily an assurance of convergence in
practice. Indeed, we do not know how to pick  2M. yD/ to represent an f 2 F1,
nor can we manipulate these Radon measures explicitly: rather we will have to
learn finite n approximations of the form  .n/ D n�1

Pn
iD1 ci�´i by adjusting

the parameters f� igniD1 D fci ; ´igniD1 dynamically. Furthermore, even though the
energy can be expressed in terms of  .n/, as we will see the dynamics can only be
closed at the level of the empirical distribution

(2.11) �.n/.dc; d´/ D 1

n

nX
iD1

�ci .dc/�´i .d´/ �
1

n

nX
iD1

��i .d�/ D �.n/.d�/

with  .n/ given by

(2.12)  .n/ D
Z
R

c�.n/.dc; �/:
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Viewed as a functional of � 2 MC.D/ such that
R
R
c�.dc; �/ D  2 M. yD/, the

loss function (2.8) becomes

(2.13)
E ��� D Cf �

Z
D

F.�/�.d�/C 1

2

Z
D�D

K.�;� 0/�.d�/�.d� 0/

D 1

2
E�

�
f �

Z
D

'. � ;�/�.d�/
�2

� 0

3 Training by Gradient Descent on the Exact Loss
Here we assume that we train the network by evolving dynamically the param-

eters f�i .t/gniD1 according to the GD flow (1.7), which we recall is given by the
coupled ODEs,

(3.1) P�i D rF.�i / � 1

n

nX
jD1

rK.�i ;�j /;

for i D 1; : : : ; n. As we show in Section 4, (3.1) shares many properties with the
stochastic gradient descent (SGD) used in applications, though in SGD a multi-
plicative noise term persists in the equations. The ODEs in (3.1) are the GD flow
on the energy:

(3.2) E.�1; : : : ;�n/ D nCf �
nX

iD1

F.� i /C 1

2n

nX
i;jD1

K.� i ;�j /:

This energy is simply the loss function in (1.4) rescaled by n.

We consider (3.1) with initial conditions such that every �i .0/ for i D 1; : : : ; n

is drawn independently from some probability distribution �in satisfying the fol-
lowing:

ASSUMPTION 3.1. The distribution �in is such that: (i) its support contains a
smooth manifold that separates the regions in D D R � yD where c > c0 and
c < �c0 for some large enough c0 > 0; (ii) in D

R
R
c�in.dc; �/ has finite total

variation, jinjTV <1; and (iii) 8b 2 R W R
R� yD

ebc�in.dc; d´/ <1:

Note that property (i) guarantees that y�in D
R
R
�in.dc; �/ has full support in yD,

supp y�in D yD—we show below that this property is preserved by the dynamics.
Distributions �in that satisfy Assumption 3.1 include, e.g.,

�0.dc/ y�in.d´/ and .2�/�1=2e�
1
2
c2dc y�in.d´/;

if supp y�in D yD in both. We denote the measure for the infinite set f� i .0/gi2N
constructed this way by Pin. Initial conditions of this type are used in practice.
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3.1 Empirical distribution and nonlinear Liouville equation
To proceed, we consider the empirical distribution

(3.3) �
.n/
t D 1

n

nX
iD1

��i .t/

in terms of which we can express (1.8) as

(3.4) f
.n/
t D 1

n

nX
iD1

'. � ;�i .t// D
Z
D�R

'. � ;�/�.n/t .d�/:

The empirical distribution (3.3) is useful to work with because it satisfies a nonlin-
ear Liouville-type equation

(3.5) @t�
.n/
t D r � �rV ��; ��.n/t

��
�
.n/
t

�
;

where we defined

(3.6) V.�; ���/ D �F.�/C
Z
D

K.�;� 0/�.d� 0/:

Throughout, we will interpret (3.5) in the standard weak sense, as in (3.8) below.
When there is a Laplacian term in (3.5) this equation is called the McKean-Vlasov
equation [15, 18, 26, 34]; with an additional noise term added it is often referred to
as Dean’s equation [16]. To prove asymptotic trainability results, we analyze the
properties of the solution to this equation as n!1 and t !1.

Derivation of (3.5).0 Let � W D ! R be a test function, and consider

(3.7)
Z
D

�.�/�
.n/
t .d�/ D 1

n

nX
iD1

�.� i .t//:

Taking the time derivative of this equation and using (3.1), we deduce

(3.8)

Z
D

�.�/@t�
.n/
t .d�/

D 1

n

nX
iD1

r�.� i .t// � P� i .t/

D 1

n

nX
iD1

r�.� i .t// �
 
rF.� i .t// � 1

n

nX
jD1

rK.� i .t/;�j .t//
!

D
Z
D

r�.�/ �
�
rF.�/ �

Z
D

rK.�;� 0/�.n/t .d� 0/

�
�
.n/
t .d�/:

This is the weak form of (3.5).
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3.2 Law of large numbers (LLN)—mean field limit

Since we know that, Pin-almost surely as n ! 1, �.n/0 * �in by the law of
large numbers, we can take the limit as n!1 of (3.5) to formally deduce:

PROPOSITION 3.2. Let �.n/t be given by (3.3) with f� i .t/gniD1 the solution of (3.1)
with initial condition drawn from Pin. Then, as n!1, �.n/t * �t a.s. where �t

satisfies

(3.9) @t�t D r � .rV.�; ��t �/�t / �0 D �in;

interpreted in the weak sense.

Note that (3.9) is the same as (3.5) but with a different initial condition. Note
also that (3.9) is the GD flow in the Wasserstein metric [1,35]. Indeed, this equation
can be written as the � ! 0 limit of the Jordan-Kinderlehrer-Otto (JKO) proximal
scheme [20]

(3.10) �tC� 2 argmin
�
E ���C 1

2
��1W 2

2 .�; �t /

�
; �0 D �in;

where W2.�; �t / is the 2-Wasserstein distance between � and �t and E ��� is de-
fined in (2.13). Finally, note that the weak solutions of (3.9) satisfy: for any test
function � W D ! R,

(3.11)
Z
D

�.�/�t .d�/ D
Z
D

�.� t .�//�in.d�/:

where � t .�/ solves is given in terms of characteristics

(3.12) P� t .�/ D �rV.� t .�/; ��t �/; �0.�/ D �:

Of course, (3.11) is not explicit since (3.12) depends on �t , but this representation
formula is useful in the sequel. In particular, notice that it implies that: (i) �t 2
MC.D/ for all t < 1 since the velocity field in (3.12) is globally Lipschitz on
R � yD by Assumption 2.1 and hence the solutions to this equation exist for all
t < 1; and (ii) supp y�t D yD with y�t D

R
R
�t .dc; �/ by Assumption 3.1, and

supp�t D D if supp�in D D.

The dynamics of ft D limn!1 f
.n/
t We now discuss the implications of the

limiting PDE for the evolution of

(3.13) lim
n!1

f
.n/
t D lim

n!1

Z
D

'. � ;�/�.n/t .d�/ D
Z
D

'. � ;�/�t .d�/ � ft

To begin, note that from (3.6) we can express V.�; ��t �/ as

(3.14) V.�; ��t �/ D
Z
�

.ft .x/ � f .x// '.x;�/�.dx/:

As a result (3.9) can be written as

(3.15) @t�t D r �
�Z

�

r�'.x;�/ .ft .x/ � f .x// �.dx/�t

�



1902 G. ROTSKOFF AND E. VANDEN-EIJNDEN

and we deduce, using (3.13),

(3.16)
@tft D

Z
D

'. � ;�/@t�t .d�/

D �
Z
D

r�'. � ;�/ �
�Z

�

r�'.x0;�/
�
ft .x

0/ � f .x0/
�
�.dx0/�t .d�/

�
:

Interchanging the order of integration gives:

PROPOSITION 3.3 (LLN). Let f .n/
t be given by (3.4) with f� i .t/gniD1 solution

of (3.1) with initial condition drawn from Pin. Then, as n ! 1, f .n/
t ! ft a.s.

pointwise, where ft satisfies

(3.17) @tft .x/ D �
Z
�

M.��t �;x;x
0/.ft .x

0/ � f .x0//�.dx0/

where we defined the kernel

(3.18)

M.���;x;x0/

D
Z
D

r�'.x;�/ � r�'.x0;�/�.d�/

D
Z
R� yD

�
c2r´ y'.x; ´/ � r´ y'.x0; ´/C y'.x; ´/y'.x0; ´/��.dc; d´/:

The kernel (3.18) is symmetric in x and x0 for any � 2 M.D/ and positive semi-
definite if � 2MC.D/ since, given any r 2 L2.�; �/, we then have

(3.19)

Z
�2

r.x/r.x0/M.���;x;x0/�.dx/�.dx0/

D
Z
R� yD

�
c2jr´R.´/j2 C jR.´/j2��.dc; d´/ � 0

where

(3.20) R.´/ D
Z
�

r.x/y'.x; ´/�.dx/:
Equation (3.17) also confirms that ft evolves on a quadratic landscape, namely the
loss function (1.3) itself: Indeed, this equation can be written as

(3.21) @tft .x/ D �
Z
�

M.��t �;x;x
0/Dft .x0/L�ft ��.dx0/;

where Df .x/ denotes the gradient with respect to f .x/ in the L2.�; �/-norm, i.e.,
given a functional F �f �,

8h W �! R W lim
´!0

d

d´
F �f C ´h� D hh;Df F �f �iL2.�;�/

D
Z
�

h.x/Df .x/F �f ��.dx/:
(3.22)

That is, Df .x/ reduces to �=�f .x/ if �.dx/ D dx.
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3.3 Long-time behavior—global convergence

Let us now analyze the long-time solutions of (3.9) for the weak limit �t of �.n/t

and (3.17) for the limit ft of f .n/
t . As is well-known, (3.9) has more stationary

points than E ��� has minimizers. Since (3.9) is the Wasserstein GD flow on E ���,
a direct calculation shows that Et D E ��t � satisfies

(3.23)
dEt

dt
D �

Z
D

jrV.�; ��t �/j2�t .d�/:

This equation implies that the stationary points �s of (3.9) are the solutions of

(3.24) rV.�; ��s�/ D 0 for � 2 supp�s:

This should be contrasted with the minimizers of E ���, which satisfy:

(3.25)

(
V.�; ����/ � xV ���� for � 2 D;

V.�; ����/ D xV ���� for � 2 supp��;

where xV ��� D R
D V.�; ���/�.d�/. In general, we cannot guarantee that the so-

lutions to (3.24) also solve (3.25). However, due to the specific form of the unit,
'.x;�/ D c y'.x; ´/, the rate of decay of the energy (3.23) reads

(3.26)

dE

dt
D �

Z
R� yD

�
c2jr yV .´; ��t �/j2 C j yV .´; ��t �/j2

�
�t .dc; d´/

D �
Z
R� yD

c2jr yV .´; ��t �/j2�t .dc; d´/ �
Z
yD
j yV .´; ��t �/j2 y�t .d´/

where y�t D
R
R
�t .dc; �/ and

(3.27) yV .´; ���/ D � yF .´/C
Z
R� yD

c0 yK.´; ´0/�.dc0; d´0/

(3.26) implies that the stationary points �s of (3.9) satisfy

(3.28) yV .´; ��s�/ D 0 for ´ 2 supp y�s D
Z
R

�s.dc; �/:

As a result, V.�; ��s�/ D c yV .´; ��s�/ D 0 for � D .c; ´/ 2 supp�s , and this
shows that the second equation in (3.25) is automatically satisfied, noting that xV D
0 for a global minimizer.

To show that first equation of (3.28) also holds, we establish that yV .´; ��s�/ D 0

everywhere in yD. We proceed by contradiction: Suppose that �t converges to
some �s such that yV .´; ��s�/ 6D 0 for ´ D yDc

s where yDc
s is the complement

in yD of yDs D supp y�s—the relevant case is when yDc
s has nonzero Hausdorff

measure in yD. Looking at the characteristic equations (3.12) written in terms of
� t D .Ct ;Z t / as

(3.29)

( PCt .c; ´/ D � yV .Z t .c; ´/; ��t �/; C0.c; ´/ D c;

PZ t .c; ´/ D �Ct .c; ´/r yV .Z t .c; ´/; ��t �/; Z0.c; ´/ D ´:
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Since we know that supp y�t D yD at all positive time t <1, in order that�t ! �s

as t ! 1, all the mass must be expelled from yDc
s . That is, all the solutions

to (3.29) must leave this domain, or at least accumulate at its boundary, while at
the same time we must have limt!1 yV .´; ��t �/ 6D 0. To show that this scenario is
impossible, note that (using the fact that yD is compact)

(3.30) 8� > 0; 9tc > 0 W sup
´

j yV .´; ��t �/ � yV .´; ��s�/j � � if t � tc :

This means that, for t � tc , to leading order in �, (3.29) reads

(3.31)

( PCt .c; ´/ D � yV .Z t .c; ´/; ��
s�/; C0.c; ´/ D c;

PZ t .c; ´/ D �Ct .c; ´/r yV .Z t .c; ´/; ��
s�/; Z0.c; ´/ D ´

which is the GD flow on

(3.32) c yV .´; ��s�/:
Suppose that yV .´; ��s�/ > 0 somewhere in yDc

s—the case when yV .´; ��s�/ < 0

somewhere in yDc
s can be treated similarly. Since yDc

s is compact, yV .´; ��s�/ must
then have a maximum in yDc

s , i.e., using the differentiability of the unit, there exists
´1 2 yDc

s with ´1 62 @ yDc
s and such that r yV .´1; ��s�/ D 0, yV .´1; ��s�/ D yV1 > 0,

and yV .´1; ��s�/ > yV .´; ��s�/ for ´ 2 yDc
s . Consider the solutions to (3.31) for

initial .c; ´/ such that Z t .c; ´/ is very close to ´1 at t D tc—these solutions
must exist since supp�t D yD for all t < 1. If among these solutions there are
some such that Ct .c; ´/ is negative at time t D tc (which is always the case if
supp�in D D since supp�t D D for all t < 1 in that case), then by (3.31)
Ct .c; ´/ becomes more negative and Z t .c; ´/ gets closer to ´1 for t > tc . If
all CtC� .c; ´/ are positive at time t D tc.�/, then the corresponding Z t .c; ´/ go
away from ´1 for as long as their Ct .c; ´/ remains positive; however, eventually
some Ct .c; ´/ become negative (since CtC� .c; ´1/ D Ct .c; ´1/� � yV .´1; ��s�/ D
Ct .c; ´1/ � � yV1 under (3.31)), at which point we go back to the first case and
Z t .c; ´/ gets closer to ´1. Either way, we can always find solutions with Z t .c; ´/

sufficiently close to ´1 at time tc.�/ that will eventually converge to ´1 rather than
exiting yDc

s , a contradiction with our assumption that all solutions must either exit
this domain or accumulate at its boundary. This argument is based on (3.31) rather
than the original (3.29), but by setting � small enough (and tc large enough) we
can make the terms left over in (3.31) arbitrarily small so that they do not affect the
result.

This concludes the justification that the stationary points �s of (3.9) are such
that yV .´; ��s�/ D 0 everywhere in yD; i.e., they are minimizers of E ���, which
from (3.28) implies

(3.33) 8´ 2 yD W 0 D
Z
�

y'.x; ´/
�
f .x/ �

Z
yD
y'.x; ´0/s.d´0/

�
�.dx/
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where s D R
R
c�s.dc; �/. As a result, by Assumptions 2.2 and 2.4,

(3.34) f D
Z
yD
y'. � ; ´/s.d´/;

In other other words, we have established:

PROPOSITION 3.4 (Global convergence). Let �t be the solution to (3.9) for the
initial condition �0 D �in that satisfies Assumption 3.1. If �t ! �� 2 MC.D/

as t !1, then under Assumptions 2.2 and 2.4 �� is a minimizer of E ��� and we
have

(3.35) lim
t!1

Z
D

'. � ;�/�t .d�/ D
Z
D

'. � ;�/��.d�/ D f:

Note that we assume that �t converges to some probability measure to establish
this proposition. This is because we cannot exclude a priori that the dynamics
eventually loses mass at infinity, e.g., if some of the solutions of the characteristic
equation (3.12) eventually diverge as t ! 1. We do not expect this scenario to
occur for most initial conditions, and one way to preclude it altogether is to add
regularizing terms in the loss function.

The argument that leads to (3.35) would be simple if it were the case that y�� DR
R
��.dc; �/ has full support in yD. Indeed, this would imply that the kernel (3.18)

evaluated on �t is positive definite not only for all t � 0 but also in the limit as
t ! 1, and hence the only fixed point of (3.17) is f . It is reasonable to assume
that supp y�� D yD because: (i) supp y�t D yD for all t < 1 as mentioned before
and (ii) there is no energetic incentive to shrink the support, even when t ! 1.
To see why, note that if �� is an energy minimizer such that supp y�� 6D yD, then
a direct calculation shows that for any � 2 .0; 1/ and any y� 2 MC. yD/ with
supp y� D yD,

(3.36) ���.dc; d´/ D .1 � �/2��..1 � �/dc; d´/C ��0.dc/y�.d´/
is also a energy minimizer in MC.D/ such that y��� D R

R
���.dc; �/ has support

yD.
In the Appendix, we analyze the behavior of �t on a longer timescale and show

that, with noise and certain regularizing terms added in (3.1), �t reaches a unique
fixed point �� 2 MC.D/ such that

R
D log.d��=d�0/d�� < 1, where �0 is

some prior measure used for regularization.

We can summarize the results of Sections 3.2 and 3.3 into:

PROPOSITION 3.5 (LLN and global convergence). Let f .n/
t be given by (3.4) with

f� i .t/gniD1 the solution of (3.1) with initial condition drawn from Pin. Then under
the conditions of Proposition 3.4 we have

(3.37) lim
n!1

f
.n/
t D ft pointwise, Pin-almost surely
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where ft solves (3.17) and satisfies

(3.38) lim
t!1

ft D f a.e. in �:

The convergence in (3.38) is equivalent to the statement in Proposition 3.4. Notice
that, since the evolution of ft occurs via (3.17), which is independent of n, for any
� > 0 we can find tc independent of n such that for t > tc , E� jft �f j2 < �. Since
for any � > 0 and t > 0 we can also find nc such that for n > nc ,

E�

��f .n/
t � ft

��2 < �;

we can interchange the limits in n and t in Theorem 3.5; i.e., we also have

(3.39) lim
n!1

lim
t!1

f
.n/
t D f:

3.4 Central limit theorem (CLT)
Let us now consider the fluctuations of �.n/t around its limit �t . To this end, we

define !.n/
t via

(3.40) !
.n/
t D n1=2

�
�
.n/
t � �t

�
;

Explicitly, (3.40) means

(3.41) !
.n/
t D n�1=2

nX
iD1

.��i .t/ � �t /:

The scaling factor n1=2 is set by the fluctuations in the initial conditions: if we pick
a test function � W D ! R, the CLT tells us that under Pin

(3.42)
Z
D

�.�/!
.n/
0 .d�/ D n�1=2

nX
iD1

z�.� i .0//! N.0; C�/ in law as n!1

where z�.�/ D �.�/�RD �.�/�in.d�/ andN.0; C�/ denotes the Gaussian random
variable with mean zero and variance

(3.43) C� D
Z
D

j z�.�/j2 �in.d�/;

To see what happens at later times, we derive an equation for !.n/
t by subtract-

ing (3.9) from (3.5) and using (3.40)

(3.44) @t!
.n/
t D r � �!.n/

t rV.�; ��t �/C
�
�t C n�1=2!

.n/
t

�rF ��; �!.n/
t

���
where we defined

(3.45) F.�; ���/ D
Z
D

K.�;� 0/�.d� 0/:

If we take the limit as n!1, the term involving n�1=2!.n/
t at the right-hand side

of (3.44) disappears (we quantify its rate of convergence to zero in more detail in
Section 3.5) and we formally deduce the following:
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PROPOSITION 3.6. Let!.n/
t be given by (3.41) with f� i .t/gniD1 the solution of (3.1)

with initial conditions drawn from Pin and �t the solution to (3.15). Then

(3.46) !
.n/
t * !t in law as n!1

where !t satisfies

(3.47) @t!t D r � �!trV.�; ��t �/C �trF.�; �!t �/
�

to be solved in the weak sense with the Gaussian initial conditions read from (3.42):

(3.48)
Z
D

�.�/!0.d�/ D N.0; C�/:

Note that since the mean of !0 is zero initially and (3.47) is linear, this mean
remains zero for all times, and we can focus on the evolution of its covariance:

(3.49) �t .d�; d�
0/ D Ein�!t .d�/!t .d�

0/�:

From (3.47) it satisfies

(3.50)
@t�t D r � ��trV.�; ��t �/C �t .d�/rG.�; d� 0; ��t �/

�
Cr 0 � ��trV.� 0; ��t �/C �t .d�

0/rG.� 0; d�; ��t �/
�

where we defined

(3.51) G.�; � ; ���// D
Z
D

K.�;� 00/�.d� 00; �/

Equation (3.50) should be interpreted in the weak sense and solved for the initial
condition

(3.52) �0.d�; d�
0/ D �in.d�/��.d�

0/:

The dynamics of gt D limn!1 n1=2.f
.n/
t � ft /. We can also test these equa-

tions against the unit, to deduce that, as n!1,

(3.53)

g
.n/
t D

Z
D

'. � ;�/!.n/
t .d�/ D n1=2

�
f
.n/
t � ft

�

D n�1=2
nX

iD1

.'. � ;� i .t// � ft /

converges in law, g.n/t ! gt , where gt is a Gaussian process satisfying

(3.54)
@tgt D �

Z
�

M.x;x0; �!t �/
�
ft .x

0/ � f .x0/
�
�.dx0/

�
Z
�

M.x;x0; ��t �/gt .x
0/�.dx0/:
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This equation should be solved with Gaussian initial conditions with mean zero
and covariance

(3.55)

C0.x;x
0/ D Ein�g0.x/g0.x

0/�

D
Z
D

'.x;�/'.x0;�/�in.d�/

�
Z
D�D

'.x;�/'.x0;� 0/�in.d�/�in.d�
0/

Since (3.54) is linear the mean of gt remains zero at all times and we can again
focus on the evolution of its covariance:

(3.56) Ct .x;x
0/ D Ein�gt .x/gt .x

0/�

We obtain

(3.57)

@tCt D �
Z
�

N.x;x0;x00; ��t �/
�
ft .x

00/ � f .x00/
�
�.dx00/

�
Z
�

M.x;x00; ��t �/Ct .x
00;x/�.dx00/

�
Z
�

M.x0;x00; ��t �/Ct .x
00;x0/�.dx00/

where �t solves (3.50) and

(3.58)

N.x;x0x00; ���/

D
Z
D�D

r�'.x;�/ � r�'.x00;�/'.x0;� 0/�.d�; d� 0/

C
Z
D�D

r�'.x0;�/ � r�'.x00;�/'.x;� 0/�.d�; d� 0/

Summarizing, we have established:

PROPOSITION 3.7 (CLT). Let g.n/t be given by (3.53) with f� i .t/gniD1 the solution
of (3.1) with initial conditions drawn from Pin and �t the solution to (3.15). Then,
as n!1, g.n/t ! gt in law, where gt is the zero mean Gaussian process whose
covariance solves to (3.57) for the initial condition (3.55).

3.5 Scaling of the fluctuations at long and very long times
To analyze the behavior of the fluctuations as t ! 1, we revisit the results

from the last section from a different perspective. Suppose that, instead of (3.41)
and (3.53), we consider

(3.59) x!.n/
t D n�1=2

nX
iD1

�
��i .t/ � �t

�
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and

(3.60) xg.n/t D n�1=2
nX

iD1

�
'. � ;�i .t// �

Z
D

'. � ; �/�t .d�/

�

where�i .t/ are independent copies of the mean-field characteristic equation (3.12).
Then, direct calculations show that x!.n/

t * x!t and xg.n/t ! xgt in law as n ! 1,
where x!t and xgt are Gaussian processes with mean zero and covariance given ex-
plicitly by

x�t .d�; d�
0/ D Ein�x!t .d�/x!t .d� 0/�
D �t .d�/��.d�

0/ � �t .d�/�t .d�
0/

(3.61)

and

xCt .x;x
0/ D Ein�xgt .x/xgt .x0/�
D
Z
D

'.x;�/'.x0;�/�t .d�/ � ft .x/ft .x
0/:

(3.62)

We can also easily write down evolution equations for x!t and xgt : they read,

(3.63) @t x!t D r � .x!trV.�; ��t �//

and

(3.64) @t xgt D �
Z
�

M.x;x0; �x!t �/
�
ft .x

0/ � f .x0/
�
�.dx0/:

Let us focus on this last equation: it is similar to (3.54) but without the last term,
� R�M.x;x0; ��t �/gt .x

0/�.dx0/. Since the kernel M is positive semidefinite, we
know that the solutions to (3.54) are controlled by those of (3.64). In particular,

(3.65) Ein

Z
�

jgt .x/j2�.dx/ D
Z
�

Ct .x;x/�.dx/ �
Z
�

xCt .x;x/�.dx/:

If we assume that �t ! �� 2MC.D/ as t !1, from (3.62) we have

(3.66) lim
t!1

Z
�

xCt .x;x/�.dx/ D
Z
D

K.�;�/��.d�/ �
Z
�

jf .x/j2�.dx/

and therefore

(3.67) lim
t!1

Z
�

Ct .x;x/�.dx/ �
Z
D

K.�;�/��.d�/ �
Z
�

jf .x/j2�.x/:

Because

(3.68)
Z
�

Ct .x;x/�.dx/ D lim
n!1

nEin

Z
�

��f .n/
t .x/ � ft .x/

��2�.dx/;
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the previous result gives a Monte-Carlo-type error bound on the loss. Note that this
bound is only nontrivial if

(3.69)

Z
D

K.�;�/��.d�/ D
Z
R� yD

c2 yK.´; ´/��.dc; d´/

� k yKk1
Z
R� yD

c2��.dc; d´/ <1:

During training, we have
R
R� yD

c2�t .dc; d´/ <1 for all t <1, and to guarantee
that this moment does not blow up as t ! 1, or more generally to control its
value in that limit, we may need to add a regularizing term to the loss function.
If (3.69) holds, there is a situation in which we can even deduce a better bound: if
supp y�� D yD, then M.x;x; ��t �/ is positive definite for all t � 0 and in the limit
t !1, indicating that the last term in (3.54) is always dissipative. In this case the
argument above shows that

(3.70) lim
t!1

Z
�

Ct .x;x/�.dx/ D 0:

Summarizing:

PROPOSITION 3.8 (Fluctuations at long times). Let f .n/
t be given with f� i .t/gniD1

the solution of (3.4) with initial conditions drawn from Pin and ft the solution
to (3.17). Then, under the conditions of Proposition 3.4 and assuming that (3.69)
holds, we have

(3.71)
lim
t!1

lim
n!1

nEin

Z
�

��f .n/
t .x/ � ft .x/

��2�.dx/
�
Z
D

K.�;�/��.d�/ �
Z
�

jf .x/j2�.dx/:

In addition, if supp y�� D yD, we have

(3.72) lim
t!1

lim
n!1

nEin

Z
�

jf .n/
t .x/ � ft .x/j2�.dx/ D 0:

In situations where supp y�� D yD and (3.72) holds, we see that the fluctuations,
initially detectable on the scale n�1=2, become higher order as time increases. To
understand the scale at which the fluctuations eventually settle, consider

(3.73) z!.n/
t .d�/ D n�.t/

nX
iD1

�
��i .t/.�/ � �t .d�/

�
where �.t/ is some time-dependent exponent to be specified. By proceeding as we
did to derive (3.44), we have that z!.n/

t satisfies

(3.74)
@t z!.n/

t D r � �z!.n/
t rV.�; ��t �/C �trF

�
�;
�z!.n/

t

���
C n��.t/r � �!.n/

t rF ��; �z!.n/
t

���C P�.t/ logn z!.n/
t :
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In order to take the limit as n!1 of this equation, we need to consider carefully
the behavior of the factors in (3.74) that contain n explicitly, i.e., !.n/

t rF.�; �z!.n/
t �/

and P�.t/ logn z!.n/
t . Regarding the former, for any p 2 N and � 2 R,

(3.75) Ein

�
n��

Z
D�D

�.�/�.� 0/z!.n/
0 .d�/z!.n/

0 .d� 0/

�p
D O.n.��1/p/;

which can be verified by a direct calculation. For example if p D 1, this ex-
pectation is n.��1/C� where C� is given in (3.43). Equation (3.75) implies that
n�� z!.n/

0 .d�/z!.n/
0 .d�/ * 0 weakly in L2p at t D 0 for any � < 1. To see

whether we can bring the fluctuations to that scale, notice that if we set

(3.76) P�.t/ logn D o.1/

the last term on the right-hand side of (3.74) is also higher order—(3.76) means
that we can vary �.t/, but only slowly. (3.76) can be achieved by choosing, e.g.,

(3.77) �.t/ D x�.t=an/
with x�.0/ D 1

2
, x� 0.u/ > 0, limu!1

x�.u/ D< 1, and an growing with n and such
that limn!1 an= logn D1. With this choice, both the last two terms on the right-
hand side of (3.74) are a small perturbation that vanishes as n!1. Therefore, if
we test z!.n/

t against the uni, and define

(3.78) zg.n/t D n�.t/
�
f
.n/
t � ft

� D Z
D

'. � ;�/z!.n/
t .d�/

we know that, if �.t/ is as in (3.77) and supp y�� D yD, this field will be controlled
and go to zero eventually. Summarizing we have established:

PROPOSITION 3.9 (Fluctuations at very long times). Assume that the conditions of
Proposition 3.8 hold and supp y�� D yD. Then

(3.79) 8� < 1 W lim
n!1

n2�Ein

Z
�

��f .n/
an

.x/ � f .x/
��2�.dx/ D 0

if an grows with n and is such that limn!1 an= logn D1.

This proposition can be stated as (1.11). It shows a remarkable self-healing prop-
erty of the dynamics: the fluctuations at scale O.n�1=2/ of f .n/

t around ft that
were present initially decrease in amplitude as time progresses, and becomeO.n�1/
or smaller as t !1.

4 Training by Online Stochastic Gradient Descent
In most applications, it is not possible to evaluate the expectation over the data

in (1.6) defining yF .´/ and yK.´; ´0/. This is especially true for yF .´/, since we
typically have limited access to f .x/: often we can only evaluate it pointwise or
only know its value on a discrete set of points. In these cases, we typically need to
approximate the expectation in (1.6) by sampling a finite data set from the measure
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� by sampling a finite data set from the measure � obtained by sampling from the
measure �.

If we fix this training data set, fxpgPpD1, and denote by

�P D P�1
PX

pD1

�xp

the corresponding empirical measure, then all the results in Section 3 apply at em-
pirical level if we replace everywhere � by �P . This, however, is not the question
we are typically interested in, which is rather:

How does the test error (that is, the error obtained using the exact
loss defined with the original �) scale if we train the network on
the empirical loss associated to �P ?

Here we will address this question in the specific setting of “online” learning
algorithms, in which we can draw a training data set of batch size P at every step
of the learning. This effectively assumes that we have access to infinite data, but
cannot use it all at the same time, and the finite size of the batch introduces noise
into the learning algorithm. The algorithm in which the gradient is estimated from
a subset of training data at each step is known as stochastic gradient descent. It
reads

(4.1) y� i .tC�t/ D y� i .t/CrFP .t; y�Pi .t//�t �
1

n

nX
jD1

rKP .t; y� i .t/; y�j .t//�t

where i D 1; : : : ; n, �t > 0 is some time step, and we defined

(4.2)

FP .t;�/ D 1

P

PX
pD1

f .xp.t//'.xp.t/;�/;

KP .t;�;�
0/ D 1

P

PX
pD1

'.xp.t/;�/'.xp.t/;�
0/;

in which fxp.t/gPpD1 areP i.i.d. variables that are redrawn from � independently at
every time step t . Next we analyze how the result from Section 3 must be modified
when we use (4.2) rather than (3.1) to perform the training.

4.1 Limiting stochastic differential equation
To analyze the properties of (4.1), we start by noticing that the term

(4.3) Ri .E�/ D rFP .t;� i / � 1

n

nX
jD1

rKP .t;� i ;�j /; E� D .�1; : : : ;�n/;
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is an unbiased estimator of the right-hand side of the GD equation (3.1). Indeed,
conditional on f� igniD1 fixed, we have

(4.4) E�Ri .E�/ D rF.� i / � 1

n

nX
jD1

rK.� i ;�j /:

This means that, if we split the right-hand side of (4.1) into its expectation plus a
zero-mean fluctuation, the expression resembles an Euler-Maruyama scheme for
a stochastic differential equation (SDE), except that the scaling of the noise term
involves �t rather than

p
�t . To write this SDE explicitly, we compute the covari-

ance of R.E�/ conditional on f� igniD1 fixed,

(4.5) cov�
�
Ri .E�/;Rj .E�

0
/
� D A

�
�f � f .n/�;� i ;�

0
j

�
where f .n/ D n�1

Pn
iD1 '. � ;� i /, and we defined

(4.6)
A.�f �;�;� 0/ D E� �jf j2r�'. � ;�/
r� 0'. � ;� 0/�

� E� �f r�'. � ;�/�
 E� �f r� 0'. � ;� 0/�:
The SDE capturing the behavior of the solution to (4.1) is

(4.7) d� i D rF.� i /dt � 1

n

nX
jD1

rK.� i ;�j /dt C
p
� dBi ;

where � D �t=P and fdBigniD1 is a white-noise process with quadratic variation

(4.8) hdBi ; dBj i D A.�f � f .n/�;� i ;�j /dt:

More precisely, [19, 25]:

LEMMA 4.1. Given any test functions � W D ! R and any T > 0, there is a
constant C > 0 such that

(4.9) sup
0�k�t�T

����1n
nX

iD1

�
E�.y�i .k�t// � E�.� i .k�t//

����� � C�t:

where y� i .t/ and � i .t/ denote the solutions to (4.1) and (4.12), respectively.

This lemma is a direct consequence of the fact that (4.1) can be viewed as the
Euler-Maruyama discretization scheme for (4.7), and this scheme has weak order
of accuracy 1. Note that if we let �t ! 0, (4.7) reduces to the ODEs in (3.1)
since � D �t=P ! 0 in that limit. We should stress, however, that this limit is
not reached in practice since the scheme (4.1) is used at small but finite �t . We
analyze next what happens when we adjust the size of � by changing �t and/or
the batch size P .
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4.2 Dean’s equation for particles with correlated noise
Lemma 4.1 indicates that we can analyze the properties of (4.7) instead of those

of (4.1). To this end, we derive an equation for the empirical distribution �
.n/
t

in (3.3) when f� i .t/gniD1 satisfy the SDE (4.7); this calculation is operationally
similar to the derivation of (3.5) but takes into account the extra drift term and the
noise term in (4.7). By applying Itô’s formula to (3.7) we deduce

(4.10)

d

Z
D

�.�/�
.n/
t .d�/

D 1

n

nX
iD1

r�.� i .t// � d� i .t/

C �

2n

nX
iD1

rr�.� i .t// W A
��
f � f

.n/
t

�
;� i .t/;� i .t/

�
dt

where f .n/
t D n�1

Pn
iD1 '. � ;� i .t// D

R
D '. � ;�/�.n/t .d�/. Using (4.7) and the

definition of �.n/t , this relation can be written as

(4.11)

d

Z
D

�.�/�
.n/
t .d�/

D
Z
D

r�.�/ � rV ��; ��.n/t

��
�
.n/
t .d�/dt

C �

2

Z
D

rr�.�/ W A��f � f
.n/
t

�
;�;�

�
�
.n/
t .d�/dt

C
p
�

n

nX
iD1

r�.� i .t// � dBi .t/

The drift terms in this equation are expressed in term of �.n/t ; for the noise term,
notice that its quadratic variation is

�p
�

n

nX
iD1

r�.� i .t// � dBi .t/;

p
�

n

nX
iD1

r�.� i .t// � dBi .t/

�

D �

Z
D�D

r�.�/r�.� 0/ W A.�f � f
.n/
t �;�;� 0/�

.n/
t .d�/�

.n/
t .d� 0/dt
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This means that, in law, (4.11) is equivalent to

(4.12)

d

Z
D

�.�/�
.n/
t .d�/

D
Z
D

r�.�/ � rV.�; ��.n/t �/�
.n/
t .d�/dt

C �

2

Z
D

rr�.�/ W A.�f � f
.n/
t �;�;�/�

.n/
t .d�/dt

Cp
�

Z
D

r�.�/ � d�.n/t .d�/

where d�.n/t .d�/ is vector-valued random measure, white in time, and with qua-
dratic variation

(4.13)


d�

.n/
t .d�/; d�

.n/
t .d� 0/

� D A
��
f � f

.n/
t

�
;�;� 0

�
�
.n/
t .d�/�

.n/
t .d� 0/dt

The first term on the right-hand side of (4.12) is the same as in the weak form
of (3.5). This is because these terms come from the drift terms in (4.7), which also
coincide with those in (3.1). However, (4.12) also contains additional terms that
were absent in (3.5)—note that these terms are different from those in the standard
Dean’s equation, because the noise term in (4.7) is correlated between the particles
instead of being independent.

4.3 LLN for SGD
If we want the result established in Proposition 3.5 to apply and also for the

approximation error to vanish as n ! 1, we need to make the additional terms
in (4.12) compared to (3.5) higher order. We do this btthey scaling � with some
inverse power of n. Specifically, we will set

(4.14) � D an�2� for some a > 0 and � > 0:

This scaling can be achieved by choosing, e.g., P D O.n2�/, which amounts to
increasing the batch size with n. The choice (4.14) implies that the last two terms
in (4.12) disappear in the limit as n ! 1. Therefore, we formally conclude that
�
.n/
t * �t as n ! 1, where �t solves the same deterministic equation (3.9) as

before. This implies that limn!1 f
.n/
t D ft D

R
D '. � ;�/�t .d�/ satisfies (3.17)

and is such that ft ! f as t ! 1. In particular, both the LLN and the global
convergence result in Proposition 3.5 still hold if the assumption in this proposition
is met, and we use the solution of (4.19) in (3.4). In turn, we can also conclude
that this proposition holds up to discretization errors in �t if we use the solution
of (4.1) in (3.4). Importantly, the covariance associated with the estimator for the
gradient, defined in (4.6), satisfies

(4.15) 8.�;� 0/ 2 D �D W lim
t!1

A.�ft � f �;�;� 0/ D 0:

This property will be useful later.
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4.4 CLT for SGD

Turning our attention to the fluctuations of �.n/t around �t , notice that there
are two sources of them: some are intrinsic to the discrete nature of the particles
apparent in �.n/t and scale as O.n�1=2/ for all t < 1 and possibly as O.n��/ for
any � < 1 as t ! 1, as discussed in Section 3.5. Other fluctuations come from
the noise term in (4.12) and scale as O.n��/ when (4.14) holds. The Itô drift terms
proportional to � D an�2� in (4.12) always make higher-order contributions.

We first consider t < 1 and subsequently examine the limit t ! 1 in Sec-
tion 4.5. In the present case, we first observe that if � � 1

2
, then for all t < 1

the fluctuations due to the noise in (4.12) are negligible compared to the intrinsic
ones from discreteness, and we are back to the GD situation studied in Section 3.
In contrast, if � 2 .0; 1

2
/, for all t < 1 the fluctuations due to the noise in (4.12)

dominate the intrinsic ones from discreteness, so let us focus on this case from
now on. To quantify these fluctuations, we can introduce n�.�.n/t � �t /, write an
equation for this scaled discrepancy, and take the limit as n ! 1. The deriva-
tion proceeds akin to the derivation of (3.47) and leads to the conclusion that, as
n!1, n�.�.n/t � �t / * !

.�/
t in law, which satisfies

(4.16)

d

Z
D

�.�/!
.�/
t .d�/ D

Z
D

r�.�/ � rV.�; ��t �/!
.�/
t .d�/dt

C
Z
D

r�.�/ � rF.�; �!.�/
t �/�t .d�/dt

Cp
a

Z
D

r�.�/ � d�t .d�/;

in which d�t .d�/ is a vector-valued random measure, white in time, and with
quadratic variation (compare (4.13))

(4.17) hd�t .d�/; d�t .d� 0/i D A.�f � ft �;�;�
0/�t .d�/�t .d�

0/dt:

Equation (4.16) should be solved with zero initial condition, since the O.n�1=2/
fluctuations arising from the initial condition are higher order compared to the scal-
ing O.n��/ we picked to obtain (4.16). Since (4.16) is linear in !.�/

t with additive
noise, it indicates that !.�/

t , a Gaussian process with mean zero and thereby fully
characterized by its covariance (we omit the equation for brevity). This also im-
plies that

(4.18) n�
�
f
.n/
t � f

�! g
.�/
t in law as n!1;
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where g
.�/
t is a Gaussian process whose evolution equation (cf. the derivation

of (3.54)) gives

(4.19)
dg

.�/
t D �

Z
�

M.�!�
t �;x;x

0/
�
ft .x/ � f .x0/

�
�.dx0/dt

�
Z
�

M.��t �;x;x
0/g

.�/
t .x0/�.dx0/dt Cp

a d�t .x/;

where M.���;x;x0/ is given in (3.18), and the quadratic variation of d�t is that ofR
D '. � ;�/d�t .d�/. Explicitly,

(4.20)

ghd�t .x/; d�t .x0/i
D
Z
�

M.��t �;x;x
00/M.��t �;x

0;x00/
��ft .x00/ � f .x00/

��2 d�.x00/dt
�
Z
�

M.��t �;x;x
00/
�
ft .x

00/ � f .x00/
�
d�.x00/

�
Z
�

M.��t �;x
0;x00/

�
ft .x

00/ � f .x00/
�
d�.x00/dt:

The SDE (4.19) should be solved with zero initial condition, g.�/0 D 0. Since it is
linear in g.�/t with additive noise, it defines a Gaussian process with mean zero and
is specified by its covariance

(4.21) C
.�/
t .x;x0/ D E

�
g
.�/
t .x/g

.�/
t .x/

�
;

whereE denotes expectation over the noise d�t (that is, over the data in the batches
used in SGD). With this calculation, we have established the following:

PROPOSITION 4.2 (CLT for SGD). Consider

(4.22) g
.�;n/
t D n��1

nX
iD1

.'. � ;� i .t// � ft / D n�
�
f
.n/
t � ft

�
with f� i .t/gniD1 the solution to the SDE (4.7) with � D an�2�, � 2 .0; 1

2
/, and

ft the solution to (3.17). Then, as n ! 1, g.�;n/t converges in law towards the
Gaussian process g.�/t , the solution of (4.19) for g.�/0 D 0.

4.5 Fluctuations in SGD at long and very long times
The noise d�t in (4.19) has the remarkable property that it self-quenches as

t ! 1 if the conditions of Proposition 3.5 are met and ft ! f as t ! 1 and
therefore, from (4.20):

(4.23) 8x;x0 2 � W lim
t!1

hd�t .x/; d�t .x0/i D 0:

Since the first drift term in (4.19) also goes to zero when ft ! f and the second
drift term is a damping term because M.��t �;x;x

0/ is positive definite for all t <
1, we know that g.�/t will be controlled as t ! 1, i.e., C .�/

t as a limit. In



1918 G. ROTSKOFF AND E. VANDEN-EIJNDEN

addition, if supp y�� D yD where y�� D R
R
��.dc; �/ D limt!1

R
R
��.dc; �/,

then M.��t �;x;x
0/ is positive definite for all t < 0 and in the limit as t !1, and

the solution to (4.19) goes to zero. Using the the Gaussian process g.n;�/t defined
in (4.22), we can summarize this result as follows:

PROPOSITION 4.3 (Fluctuations in SGD at long time). Under the conditions of
Proposition 3.5, if f .n/

t is given by (3.4) with f� i .t/gniD1 the solution of (4.7) with
� D an�2�, � 2 .0; 1

2
/, and initial condition drawn from Pin, and ft solves (3.17),

then

(4.24) lim
t!1

lim
n!1

n2�E

Z
�

��f .n/
t .x/�ft .x/

��2�.dx/ D lim
t!1

C
.�/
t .x;x0/ exists.

In addition, if supp y�� D yD, then this limit is zero.

If supp y�� D yD where y�� D R
R
��.dc; �/ D limt!1

R
R
��.dc; �/, then

M.��t �;x;x
0/ is positive definite for all t < 0 and in the limit as t ! 1. In

that case, the only fixed point of (4.19) is zero. Since in this case we also know
that the fluctuations from the initial conditions disappear on scale O.n�/ for any
� < 0, we can proceed as in Section 3.5 and adjust � all the way up to 1 instead of
1
2

. That is, we can generalize Proposition 3.9 as follows:

PROPOSITION 4.4 (Fluctuations in SGD at very long times). Under the conditions
of Proposition 4.3, if supp y�� D yD, then for any � 2 .0; 1/,

(4.25) lim
n!1

n2�E

Z
�

��f .n/
an

.x/ � f .x/
��2�.dx/ D 0

if an grows with n and is such that limn!1 an= logn D 1—here E denotes
expectation over both the initial condition Pin and the noise in (4.7).

5 Illustrative Example: 3-Spin Model
on the High-Dimensional Sphere

To test our results, we use a function known for its complex features in high
dimensions: the spherical 3-spin model, f W Sd�1.pd/! R, given by

(5.1) f .x/ D 1

d

dX
p;q;rD1

ap;q;rxpxqxr ; x 2 Sd�1.
p
d/ � R

d ;

where the coefficients fap;q;rgdp;q;rD1 are independent Gaussian random variables
with mean zero and variance one. The function (5.1) is known to have a number
of critical points that grows exponentially with the dimensionality d [2, 3, 29]. We
note that previous works have sought to draw a parallel between the glassy 3-spin
function and generic loss functions [13], but we are not exploring such an analogy
here. Rather, we simply use the function (5.1) as a difficult target for approximation
by neural networks. That is, throughout this section, we train networks to learn f
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with a particular realization of ap;q;r and study the accuracy of that representation
as a function of the number of particles n.

5.1 Learning with Gaussian kernels
We first consider the case when D D Sd�1.

p
d/, and we use

(5.2) '.x; ´/ D e�
1
2
�jx�´j2

for some fixed � > 0. In this case, the parameters are elements of the domain of the
function (here the d -dimensional sphere). Note that, since jxj D j´j D p

d , up to
an irrelevant constant that can be absorbed in the weights c, we can also write (5.2)
as

(5.3) '.x; ´/ D e��x�´:

This setting allows us to simplify the problem. Using

(5.4) f .n/.x/ D 1

n

nX
iD1

ci'.x; ´i / D 1

n

nX
iD1

cie
��x�´i ;

we can use as alternative loss

(5.5) L�f .n/� D �1
n

nX
iD1

cif .´i /C 1

2n2

nX
i;jD1

cicj'.´i ; j́ /I

i.e., eliminate the need for data beside the set f´igniD1. In terms of the empirical
distribution, the loss can be represented as

(5.6) L�f .n/� D �
Z
yD
f .´/ .n/.d´/C 1

2

Z
yD� yD

'.´; ´0/ .n/.d´/ .n/.d´0/;

where  .n/ D R
R
c�.n/.dc; �/. Viewed as an integral kernel, ' is positive definite;

as a result, the loss is a convex functional of  .n/ (or �.n/). Hence, the results
established above apply to this special case as well. The GD flow on the loss (5.5)
can now be written explicitly as

(5.7)

8<
:
Ṕ i D cirf .´i /C �

n

Pn
jD1 cicj j́ e

��´i � j́ � �i´i ;

Pci D f .´i / � 1
n

Pn
jD1 cj e

��´i � j́ ;

where ��i´i is a Lagrange multiplier term added to enforce j´i j D
p
d for all

i D 1; : : : ; n, f .x/ is given by (5.1), and rf .´/ is given componentwise by

(5.8)
@f

@ ṕ
D 1

d

dX
q;rD1

.ap;q;r C ar;p;q C aq;r;p/´q´r :

As is apparent from (5.7), the advantage of using radial basis function networks (or,
in fact, any unit y� which is (i) such that yD D � and (ii) positive definite) is that
we can use f .x/ and the unit '.x; ´/ directly, and do not need to evaluate yF .´/
and yK.´; ´0/ (that is, we need no batch). In other words, the cost of running (5.7)
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FIGURE 5.1. Left panel: Comparison between the level sets of the orig-
inal function f in (5.1) (black dotted curves) and its approximation by
the neural network in (5.4) with n D 128 and d D 5 in the slice defined
by (5.9). Also shown is the projection in the slice of the particle position.
Right panel: empirical loss in (5.10) vs. n at the end of the calculation.
The stars show the empirical loss for 10 independent realizations of the
coefficients ap;q;r in (5.1).

scales like .dn/2 instead of P.Nn/2 in the case of a general network optimized
by SGD with a batch of size P and ´ 2 yD � R

N . If we make P scale with n,
like P D Cn2� for some C > 0, as we need to do to obtain the scalings discussed
in Section 4, the cost of SGD becomes N 2n2C2�, which quickly becomes much
worse than .dn/2 as n grows.

We tested the representation (5.4) in d D 5 using n D 16, 32, 64, 128, and 256
and setting � D 5=d D 1. The training was done by running a time-discretized
version of (5.7) with time step �t D 103 for 2 � 105 steps: during the first 105

we added thermal noise to (5.7), which we then removed during the second half of
the run. The representation (5.4) proves to be accurate even at rather low values
of n: for example, the right panel of Figure 5.1 shows a contour plot of the original
function f and its representation f .n/ with n D 128 through a slice of the sphere
defined as

(5.9) x.�/ D
p
d .sin.�/ cos.�/; sin.�/ sin.�/; cos.�/; 0; 0/ ;

with � 2 �0; �� and � 2 �0; 2�/. The level sets of both functions are in good
agreement. Also shown on this figure is the projection on the slice of the position
of the 64 particles on the sphere. In this result, the parameters ci take values that
are initially uniformly distributed by about �40d2 D �103 and 40d2 D 103. To
test the accuracy of the representation, we used the following Monte Carlo estimate
of the loss function:

(5.10) LP
�
f
.n/
t

� D 1

2P

PX
pD1

��f .xp/ � f
.n/
t .xp/

��2:
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FIGURE 5.2. The log of the empirical loss in (5.10) as a function of
training time by SGD for the sigmoid neural network in d D 10 (left
panel) and d D 25 (right panel). At time t D 2 � 106, the batch size is
increased to initiate a quench. The insets show the log of the empirical
loss as a function of time during the final 105 time steps of training.

This empirical loss function was computed with a batch of 106 points xp uniformly
distributed on the sphere. The value (5.10) calculated at the end of the calculation
is shown as a function of n in the right panel of Figure 5.1: the empty circles
show (5.10) for four individual realizations of the coefficient ap;q;r in (5.1); the
full circle shows the average of (5.10) over these four realizations. The blue line
scale as n�1, the red one as n�2: as can be seen, the empirical loss decays with n
faster than n�1, which is as expected.

5.2 Learning with single layer networks with sigmoid nonlinearity
To further test our predictions and also assess the learnability of high-dimensional

functions, we used 3-spin models in d D 10 and 25 dimensions, which we approx-
imated with a single-layer neural network with sigmoid nonlinearity parametrized
by ´ D .a; b/ 2 D D R

dC1, with a 2 Rd , b 2 R, and

(5.11) '.x; ´/ D h.a � x C b/:

This gives

(5.12) f .n/.x/ D 1

n

nX
iD1

cih.ai � x C bi /;

where h.´/ D 1=.1C e�´/. Simple networks like these, as opposed to deep neural
with many parameters, provide greater assurance that we have trained sufficiently
to test the scaling.

We trained the model in (5.12) using SGD with an initial batch size of P D
bn=5c points uniformly sampled on the sphere for 2� 106 time steps, resampling a
new batch at every time step: this corresponds to choosing � D 1=2 in the notation
of Section 4. Towards the end of the trajectory, we initiated a partial quench by
increasing the batch size to P D b.n=5/2c (i.e., � D 1) which we run for an addi-
tional 2 � 105 time steps. Figure 5.2 shows the empirical loss in (5.10) calculated
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FIGURE 5.3. Error scaling for a single-layer neural network with sig-
moid nonlinearities. Upper row: d D 10; lower row: d D 25.
The first column shows the empirical loss in (5.10), the second column
shows (5.13), and the third column shows (5.13) with �.f / replaced by
�.�f /. The stars show the results for 10 different realizations of the co-
efficients ap;q;r in (5.1): the dashed lines decay as n�1, consistent with
the predictions in (4.25) and 3.7 .

over the batch as a function of training time during the optimization with n D 256

particles and d D 10 (left panel) and d D 25 (right panel). Note that the lack of
intermediate plateaus in the loss during training is consistent with our conclusion
that the dynamics effectively descends on a quadratic energy landscape (i.e., the
loss function itself) at the level of the empirical distribution of the particles. After
the quench the empirical loss shows substantially smaller fluctuations as a func-
tion of time, which helps to reduce the fluctuating error. The inset shows the final
105 time steps in which there is negligible downward drift, indicating convergence
towards stationarity at this batch size.

In these higher-dimensional examples, we tested the scaling with three different
observables. First, we considered the empirical loss function in (5.10) which we
computed over a batch of size yP D 105 larger than P . As shown in the two
right panels, Figure 5.3, L yP

�f
.n/
t � scales as n�1, as expected. We also tested the

estimate in (4.25) using

(5.13)
1

yP

yPX
pD1

�
�
f .xp/

� �
f .xp/ � f

.n/
t .xp/

�
;
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FIGURE 5.4. One-dimensional slices through the d D 10 (upper row)
and d D 25 (lower row) neural net representation f .n/ are shown below
a yellow curve with the target function f . In d D 10, the function
representations clearly capture the main features of the target function,
with only small scale deviations. In d D 25 there is remarkably good
signal when n D 1024 while the smaller neural network is less able to
faithfully represent the target function.

and similarly with �
��f .xp/�: here � denotes the Heaviside function. The result

is shown in the four right panels in Figure 5.3: (5.13) scales as n�1, consistent
with (4.25) and our choice of � D 1.

To provide further confidence in the quality of the representations, we also made
a visual comparison by plotting f and f .n/ along great circles of the sphere. We
do so by picking i ¤ j in f1; : : : ; dg and setting x D x.�/ D .x1.�/; : : : ; xd .�//

with

(5.14) xi .�/ D
p
d cos.�/; xj .�/ D

p
d sin.�/; xk.�/ D 0 8k 6D i; j:

In Figure 5.4 we plot f .x.�/ and f .n/.x.�// along three great circles for d D 10

and d D 25. As can be seen, the agreement is quite good and confirms the quality
of the final fit. A strong signal is present in d D 25 with n D 1024, a remarkable
fact when considering that if we had only two grid points per dimension, the total
number of points in the grid would be 225 D 33; 554; 432.

6 Concluding Remarks
Viewing parameters as particles with the loss function as interaction potential

enables us to leverage a powerful theoretical apparatus developed to analyze prob-
lems from statistical physics. Using these ideas, we can analyze the approximation
quality and the trainability of neural network representations of high-dimensional
functions. Several insights emerge from our analysis based on this viewpoint: First,
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these tools show the dynamical realizability of the universal approximation theo-
rems, a direct consequence of the law of large numbers for the empirical distri-
bution of the parameters. Specifically, we conclude that the empirical distribution
effectively descends on the quadratic loss function landscape when the number n
of parameters in the network is large. This confirms the empirical observation that
wide neural networks are trainable despite the nonconvexity of the loss function
viewed from the individual particles perspective (as opposed to that of their em-
pirical distribution). Secondly, we have derived a central limit theorem for the
empirical distribution of the parameters, specifying the approximation error of the
neural network representation and showing that it is universal.

We derived these results first in the context of gradient descent dynamics; how-
ever, our conclusions also apply to stochastic gradient descent. The analysis in-
dicates how the parameters in SGD should be chosen, in particular how the batch
size should be scaled with n given the time step used in the scheme, which can be
done towards the end of training.

These results were derived for a quadratic loss, L�f .n/� D 1
2
E� jf � f .n/j2.

However, they do generalize to other losses as long as they are convex in f .n/.
We also worked in the limit of an infinite amount of training data, an idealized

setting that does not address the error incurred from a finite data set. For a neural
network trained on a dataset of P points, fxpgPpD1, we can decompose the “gener-
alization” error into components that involve the approximation error and the error
from the finiteness of the data,

(6.1) E�

��f � f
.n/
P

��2 � E���f � fP
��2 C E�

��fP � f
.n/
P

��2;
where fP and f .n/

P are the approximations of f we can get if we train the network
on the empirical loss build on fxpgPpD1 with finitely (n <1) or infinitely (n!1)
many units, respectively. Our results give direct insight on the second term on the
right-hand side of (6.1). We leave assessments of the first term for future work.

Our numerical results not only confirm our predictions, but also emphasize the
capability of neural networks to represent high-dimensional function accurately
with a relatively modest number of adjustable parameters. Needless to say, the
computational achievements of neural networks open the door to developments
in scientific computing that we are only beginning to grasp. Such applications
may benefit from better understanding how the specific architecture of the neural
networks affects the approximation error and trainability, not in the general terms
of their scaling with n that we analyzed here, but in the details of the constant
involved.

Appendix: Training at Finite (But Small) Temperature
For completeness, let us consider here the case when noise terms are added

in (3.1) and the ODEs become stochastic differential equations (SDEs). Additive
noise addresses the nonuniqueness issues encountered in Section 3. To formulate
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the resulting SDEs, we need a distribution �0 2 MC.D/ used to regularize the
dynamics. We specify its properties via the following:

ASSUMPTION A.1. The distribution �0 (i) has a density �0 that is continuously
differentiable, �0 2 C 1.D/; (ii) is such that supp.�0/ D D; and (iii) satisfies

(A.1) 8b 2 R W
Z
R

ebc�0.dc; �/ <1 and
Z
R

c�0.dc; �/ D 0:

We then replace (3.1) with the SDEs

(A.2)
d� i D rF.� i /dt � 1

n

nX
jD1

rK.� i ;�j /dt

C .�n/�1r log �0.� i /dt C
p
2.�n/�1=2dW i ;

for i D 1; : : : ; n. Here W i are n independent Wiener processes, taking values
in D, and � > 0 is a parameter playing the role of inverse temperature and con-
trolling the amplitude of a noise added to the dynamics. Note the specific scale
on which the regularizing and the noise terms act in (A.2): they are higher-order
perturbations. We comment on the choice of this scaling in Remark A.2 below.
The SDEs (A.2) are overdamped Langevin equations associated with the energy:

(A.3)

E� .�1; : : : ;�n/ D nCf �
nX

iD1

F.� i /C 1

2n

nX
i;jD1

K.� i ;�j /

� .�n/�1
nX

iD1

log �.� i /;

This energy is (3.2) plus a regularizing term (the one involving � log �0). Under
Assumption A.1 this term guarantees that, for any � > 0, the following integral is
finite:

(A.4) Zn D
Z
Dn

e�n�E�.�1;:::;�n/d�1 � � � d�n <1;

which in turn implies that

(A.5) Z�1
n exp

��n�E� .�1; : : : ;�n/
�

is a normalized probability density on Dn. As a result, the solutions to (3.1) are er-
godic with respect to the equilibrium distribution with density (A.5) for any � > 0.

A.1 Dean’s equation
Let � W D ! R be a test function. Applying Itô’s formula to

n�1
nX

iD1

�.� i .t// D
Z
D

�.�/�
.n/
t .d�/
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and using (A.2) gives

(A.6)

d

Z
D

�.�/�
.n/
t .d�/

D 1

n

nX
iD1

r�.� i .t// � d� i .t/C ��1
nX

iD1

��.� i .t//dt

D
Z
D

r�.�/ �
�
rF.�/�.n/t .�/ �

Z
D

rK.�;� 0/�.n/t .d� 0/�
.n/
t .d�/

�
dt

C .�n/�1
Z
D

r�.�/ � �r log �0.�/ �
.n/
t .d�/

�
dt

C .�n/�1
Z
D

��.�/�
.n/
t .d�/dt

C
p
2.�n3/�1=2

nX
iD1

r�.� i .t// � dW i .t/

The drift terms in this equation are closed in terms of �.n/t ; the noise term has a
quadratic variation given by

(A.7)

�
.�n3/�1=2

nX
iD1

r�.� i .t// � dW i .t/; .�n
3/�1=2

nX
iD1

r�.� i .t// � dW i .t/

�

D ��1n�3
nX

iD1

jr�.� i .t//j2 dt

D ��1n�2
Z
D

jr�.�/j2�.n/t .d�/dt:

As a result, (A.6) is sometimes written formally as the stochastic partial differential
equation (SPDE)

(A.8)

@t�
.n/
t D r �

�
rF�.n/t C

Z
D

rK.�;� 0/�.n/.d� 0/�.n/t

�

� .�n/�1r � �r log �0�
.n/
t

�
C .�n/�1��

.n/
t C

p
2��1=2n�1r �

�q
�
.n/
t P�t

�
where P�t D P�t .�/ is a spatiotemporal white noise so that the quadratic variation
of the noise term in (A.8) is formally given by (A.7). This equation is referred to
as Dean’s equation. It is difficult to give (3.5) a precise meaning because it is not
clear how to interpret the noise term. It remains useful to analyze the properties of
�
.n/
t as n!1, however, which is what we will do next.

Remark A.2. We could also consider situations where in (A.2) n�1 is replaced by
n�� with � 2 �0; 1/. The case � D 0 is treated in [27]: with this scaling, the
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diffusive and regularizing terms in (A.8) are replaced by

��1��
.n/
t � ��1r � �r log �0�

.n/
t

�
;

and the noise terms by

p
2.�n/�1=2r �

�q
�
.n/
t P�t

�
:

This means that these diffusive and regularizing terms affect the mean field limit
equation for �t , whereas the noise terms remain higher order. In particular, in that
case one can prove that �.n/t * �t with �t that converges to a unique fixed point
�� such that �� > 0 a.e. in D but for which

R
D '. � ;�/�� .d�/ 6D f (there is a

correction proportional to ��1). When � 2 .0; 1/, the diffusive and regularizing
terms in (A.8) are replaced by

��1n����
.n/
t � ��1n��r � �r log �0 �

.n/
t

�
;

and the noise terms by
p
2.�n1C�/�1=2 r � �q�.n/ P�t

�
:

This means that none of these terms affect the mean field limit equation, but at
next order, O.n��/, the diffusive and regularizing terms dominate whereas the
noise terms remain higher order. In the case when � D 1, on which we focus here,
the diffusive, regularizing, and noise terms are perturbations on the O.n�1/ same
scale, the same scale as the errors introduced by discretization effects (finite n)
also present in GD.

A.2 Multiple-scale expansion
The advantage of adding noise terms in (A.2) is that it guarantees ergodicity

of the solution to these SDEs with respect to the equilibrium distribution with
density (A.5). Correspondingly, we focus on analyzing the long-time ergodicity
properties of the empirical distribution satisfying (A.8). On long timescales, the
memory of the initial conditions is lost, and we can directly pick the right scaling
to analyze the fluctuations of �.n/t around its limit �t : as discussed in Remark A.2
and confirmed below, this scale is O.n�1/, consistent with what we reach at long
times with GD as discussed in Section 3.

We analyze (A.8) by formal asymptotic, using a two-timescale expansion. Con-
sistent with the expected O.n�1/ scaling of the fluctuations, we look for a solution
of this equation of the form

(A.9) �
.n/
t D �t;� C n�1!t;� C o.n�1/; � D t=n:

We use the rescaled time � D t=n to look at the solution to (A.8) on O.n/

timescales. Not only does this fix the behavior of �t;� on long timescales but also
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guarantees solvability of the equation for !t;� . Treating t and � as independent
variables, (A.9) implies that

(A.10) @t�
.n/
t D @t�t;� C n�1.@��t;� C @t!t;� /

Inserting (A.9) and (A.10) in (A.8) and collecting terms of the same order in n�1,
we arrive at the following two equations at order O.1/ and O.n�1/, respectively,

(A.11) @t�t;� D r � �rV.�; ��t;� �/�t;�

�
and

(A.12)

@��t;� C @t!t;� D r � �rV.�; ��t;� �/!t;� CrF.�; �!t;� �/�t;�

�
C ��1��t;� � ��1r � �r log �0 �t;�

�
C
p
2��1=2 r � �p�t;� P�t

�
A.3 Law of large numbers at finite temperature

Since (A.11) is identical to (3.9), the results we established in Section 3.3 still
hold at finite temperature. In particular, Proposition 3.5 applies. As we see below,
we can obtain more information about �t by looking at the evolution of this func-
tion on longer timescales, and we will be able to deduce that supp�t;� D D. This
guarantees that (2.10) holds, so it can be removed from the assumptions needed in
Proposition 3.5.

A.4 Global convergence on O.n/ timescales
An equation governing the evolution of�t;� on the rescaled time � D t=n can be

derived by time averaging (A.12) over t . This equation guarantees the solvability
of (A.12). Since �t;� ! �� as t ! 1, where �� is a stationary point of (A.11),
we have

(A.13) lim
T!1

1

T

Z T

0

�t;�!t;� dt D �� x!�
where

(A.14) x!� DW lim
T!1

1

T

Z T

0

!t;� dt

in which we assume that the time average of !t;� exists (which we check a pos-
teriori). Using (A.13) and the fact that the white-noise terms time-average to zero
almost surely, we deduce that the time average of (A.12) is

(A.15)
@��� D r � .rV.�; ��� �/x!� CrF.�; �x!� �/�� /

C ��1��� � ��1r � .r log �0�� / :

Because of the presence of the diffusive term ��1��� in (A.15), we can therefore
conclude that on the timescales where this equation holds we must have �� > 0
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a.e. on D. This means that (2.10) holds and so V.�; ��� �/ D 0 sinceZ
D

'. � ;�/�� .d�/ D f

by Proposition 3.5. As a result, (A.15) reduces to

(A.16) @��� D r � .rF.�; �x!� �/�� /C ��1��� � ��1r � .r log �0�� / :

Since V.�; ��� �/ D 0 needs to be satisfied, in (A.16) we can treat the term involv-
ing the factor F.�; �x!� �/ as a Lagrange multiplier used to enforce this constraint.
It is also easy to see that (A.16) is the Wasserstein GD flow on

(A.17)
Z
D

�
��1 log.d�=d�0/C F.�; �x!� �/

�
�.d�/:

Since this energy is strictly convex, a direct consequence of these observations is
that the stable fixed points of (A.16) are the minimizers of the energy (A.17) subject
to the constraints that V.�; ��� �/ D 0 and �� 2 MC.D/. These fixed points are
reached on a timescale that is large compared to the O.n/ timescale � D t=n.

Recalling that �t;� is the weak limit of �.n/t as n ! 1 and V.�; ���/ D
�F.�/C R

D K.�;� 0/�.d� 0/, we can summarize these considerations into:

PROPOSITION A.3. If �.n/t is the empirical distribution that is defined in (3.3) with
f� i .t/gniD1, the solution to (A.8). Then given any bn > 0 such that bn=n!1 as
n!1, we have

(A.18) �
.n/

bn
* �� as n!1

where �� is the minimizer in MC.D/ of

(A.19) ��1
Z
D

log.d�=d�0/�.d�/

subject to

(A.20) F.�/ D
Z
D

K.�;� 0/��.d� 0/ a.e. in D.

It is easy to see that the solution to the minimization problem in Proposition A.3 is
such that

(A.21)
Z
D

log.d��=d�0/��.d�/ <1 and supp�� D D:

The first condition says that the minimizer exists, which is clear since we can
find test distributions � 2 MC.D/ such that (i)

R
R
c�.dc; �/ D � where �

solves (2.6) (i.e., such that � satisfies the constraint in (A.20)), and (ii) � has finite
entropy with respect to �0. One such � is

(A.22) �.dc; d´/ D j�j�1TV
�
�j�jTV.dc/

�
C.d´/C ��j�jTV.dc/

�
�.d´/

�
:



1930 G. ROTSKOFF AND E. VANDEN-EIJNDEN

To prove that supp�� D D, suppose by contradiction that the minimizer is such
that �� D 0 if � 2 B with

R
B �0.d�/ > 0. For s 2 �0; 1�, consider �s D

.1 � s/�� C s�0. A direct calculation shows that

(A.23)

Z
D

log.d�s=d�0/�s.d�/ D
Z
B

log.d��=d�0/��.d�/

C s log s
Z
Bc

�0.d�/CO.s/:

Since s log s
R
Bc �0.d�/ < 0 for s 2 .0; 1/, (A.23) implies that for s > 0 small

enough

(A.24)
Z
D

log.d�s=d�0/�s.d�/ <
Z
B

log.d��=d�0/��.d�/;

a contradiction with our assumption that �� is the minimizer.
Let us also analyze in some more detail the constrained optimization problem

in Proposition A.3 since this will be useful in the next section. If we denote by ��

the minimizer of (A.19) subject to (A.20) and by �� the Lagrange multiplier used
to satisfy the first constraint in (A.20), this Lagrange multiplier is given by

(A.25) ��.�/ D ��1
�

�F.�/

Z
D

log.d��=d�0/��.d� 0/:

It is easy to see that �� is independent of �: indeed, we can drop the factor ��1 in
front of (A.19) without affecting the minimization problem. This also means that
the dependency of �� in � is explicit: Indeed, from (A.25)

(A.26) ��.�/ D ��1��.�/

where ��.�/ is given by

(A.27) ��.�/ D �

�F.�/

Z
D

log.d��=d�0/��.d� 0/:

This factor is independent of � since �� is. It will be useful later to work with the
function ��.x/ defined via the equation

(A.28)
Z
D

'.x;�/��.�/d� D
Z
D

Z
�

'.x;�/'.x0;�/��.x0/�.dx0/d�

This is the Euler-Lagrange equation for the minimizer of

(A.29)
1

2

Z
D

������.�/ �
Z
�

�.x/'.x;�/�.dx/

����
2

d�

over �. Therefore, (A.28) is also the equation for the least squares solution of

(A.30) ��.�/ D
Z
�

��.x/'.x;�/�.dx/

and such a least squares solution exists for a modification of ��.�/ that is arbitrarily
close to it in L2.D/: any such solution for a modification of ��.�/ that is O.n�1/
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away from it is good enough for our purpose since the discrepancy can be absorbed
in higher-order terms in our expansion in n�1. This solution is also unique by
Assumption 2.2, and it can be expressed as

(A.31) ��.x/ D Df .x/

Z
D

log.d��=d�0/��.d�/

where �� is viewed as a functional of f .x/ by using

F.�/ D
Z
�

f .x/'.x;�/�.dx/;

and Df .x/ denotes the gradient with respect to f .x/ in the L2.�; �/-norm defined
in (3.22). The equality (A.31) follows from (A.27) and the fact that Df .x/F.�/ D
'.x;�/.

Remark A.4. Compared to the case treated in [27] where the noise and regulariz-
ing terms in (A.2) are scaled as ��1 (high temperature) rather than .�n/�1 (low
temperature), we see that we can also conclude that �t converges as t ! 1 to a
distribution �� with supp�� D D; however, the fixed point �� we obtain satisfiesR
D '. � ;�/��.d�/ D f , whereas the one obtained at high temperature introduces

a correction proportional to ��1 in this relation. The price we pay by working at
low temperature is that convergence in time may be slower if the initial condition
�0 D �in is such that (2.10) is not satisfied by the GD flow without noise: specif-
ically, this convergence should occur on timescales that are intermediate between
O.1/ and O.n/.

A.5 Central limit theorem at finite temperature

Now that we have determined the behavior of limn!1 �
.n/
t D �t at all times,

we can stop distinguishing � from t , and focus on !t . We already know that (A.20)
constrains the average value of !t on long timescales, but we would also like to
quantify this average value beyond what (A.20) implies, and also analyze the fluc-
tuations around this average. To this end, let us use (A.16) in (A.12) and look
at the resulting equation on timescales where �t has converged to ��, the mini-
mizer specified in Proposition A.3, so that V.�; ����/ D 0 and � has converged to
�� D ��1��. This can be achieved by considering (A.12) with initial condition at
t D T and pushing back T ! �1. The resulting equation is

(A.32)
@t!t D r �

�
���1r���� C

Z
D

rK.�;� 0/!t .d� 0/��
�

C
p
2��1=2r � �p�� P�t

�
Even though we derived it formally, the SPDE (A.38) can be given a precise mean-
ing: since its drift is linear in !t and its noise is additive (recall that �� is a given,
nonrandom distribution), (A.38) defines !t as a Gaussian process. This also means
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that

(A.33) gt D
Z
D

'. � ; d�/!t .d�/

is a Gaussian process. This is an important quantity since gives the error on f

made in f .n/
t at order O.n�1/:

(A.34) f
.n/
t D f C n�1gt C o.n�1/

Let us derive a closed equation for gt from (A.32). To this end, notice first that
we can use

(A.35)
Z
D

K.�;� 0/!t .d�
0/ D

Z
�

'.x;�/gt .x/�.dx/

to express the integral terms in (A.32) in terms of gt . By taking the time derivative
of (A.33) and using (A.32) together with (A.35) and (A.28) we derive

(A.36)

@tgt D
Z
D

'. � ;�/@t!t .d�/

D
Z
D

r�'. � ;�/

�
Z
�

r�'.x0;�/
�
gt .x

0/ � ��1��.x0/
�
�.dx0/��.d�/

�
p
2��1=2

Z
D

r�'. � ;�/ �
p
�� P�t

D
Z
�

M.����;x;x0/
�
gt .x

0/ � ��1��.x0/
�
�.dx0/

�
p
2��1=2

Z
D

r�'. � ;�/ �
p
�� P�t

where M.���;x;x0/ is the kernel defined in (3.18). Since the quadratic variation
of the noise term in this equation is

(A.37) 2��1M.����;x;x0/dt

in law, it is equivalent to

(A.38)
@tgt D �

Z
�

M.����;x;x0/
�
gt .x

0/ � ��1��.x/
�
�.dx0/

C
p
2��1=2

Z
�

�.����;x;x0/ P�t .x0/dx0

where P�t .x/ is a spatiotemporal white noise, and �.����;x;x0/ is such that

(A.39)
Z
�

�.����;x;x00/�.����;x0;x00/dx00 DM.����;x;x0/:
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Note that this decomposition exists since �� 2 MC.D/ with supp�� D D, and
hence M.����;x;x0/ is positive definite. The asymptotic mean and variance of
gt can be readily deduced from (A.38) by noting that this Ornstein-Uhlenbeck
equation is in detailed balance with respect to the Gibbs distribution associated
with the energy

(A.40)
1

2

Z
�

��gt .x0/ � ��1��.x/
��2 �.dx/:

We can state this as follows:

PROPOSITION A.5 (CLT at finite temperature). Let f .n/
t be given by (3.4) with

f� i .t/gniD1 a solution to (A.8) with initial conditions specified at t D T . Then

(A.41) lim
T!�1

lim
n!1

n
�
f
.n/
t � f

� D gt in law

where gt is the stationary Gaussian process specified by (A.38) and whose mean
and covariance satisfy: for any test function � W �! R

(A.42)

E

Z
�

�.x/gt .x/�.dx/ D ��1
Z
�

�.x/��.x/�.dx/;

E

�Z
�

�.x/
�
gt .x/ � ��1��.x/

�
�.dx/

�2
D ��1

Z
�

j�.x/j2�.dx/;

where �� is given by (A.31)

Notice that if we quench the result in (A.42) (i.e., send � ! 1), we arrive at
the conclusion that gt ! 0 as t ! 1 in that case. This is consistent with what
happens at zero temperature in the limit as � ! 1; see Proposition 3.9.
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