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Mapping current fluctuations of stochastic pumps to nonequilibrium steady states
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We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding
time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures
equivalence of not only the averages, but also optimal representation of fluctuations in currents and density.
Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the
“housekeeping” heat. As a consequence of the decomposition of entropy production, the current fluctuations in
weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy
production.
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Nonequilibrium steady states are an essential paradigm for
describing nanoscale biological machines, such as molecular
motors that extract work from chemical gradients [1]. When
a system is coupled to reservoirs with different chemical po-
tentials, the dynamics breaks detailed balance and persistent,
directed motion can be used to perform mechanical work.
Such a system is typically described as a Markov process
with time-independent rates that depend both on the external
chemical gradient and internal dynamics.

Promising applications across many disciplines have mo-
tivated efforts to design artificial molecular machines that
behave like those in biological settings. Nonequilibrium steady
states, however, have proved difficult to engineer [2]. Time-
dependent external perturbations offer an alternative route to
breaking detailed balance. Indeed, many synthetic nanoscale
machines are implemented as “stochastic pumps,” in which
currents are generated by periodically varying an external
potential [3–7]. A stochastic pump can be modeled as a
nonhomogeneous Markov jump process with instantaneous
Arrhenius rates that are determined by time-dependent energy
levels and barrier heights [8–10].

Recently, Raz et al. [10] proposed a mapping between time-
independent steady states and periodically driven stochastic
pumps that offers a set of design principles for engineering
biomimetic nanodevices. While the mapping ensures that
the average properties are asymptotically equivalent in both
representations, it makes no guarantees about the fluctuations.
At the nanoscale, however, fluctuations play a crucial role
in determining characteristics such as work and efficiency
in finite-time measurements [11,12]. Indeed, fluctuations in
both efficiency and current have become a central focus
in nonequilibrium statistical mechanics: Theoretical devel-
opments have predicted universal properties of fluctuating
nanoscale machines [11,13–15] and experimental realizations
of nanoscale engines have drawn particular attention to the
impact of fluctuations on measurements of efficiency [7,16].

Translating between nonequilibrium steady states and
stochastic pumps relies on the so-called “dynamical equiv-
alence principle” of Zia and Schmittmann [17]. This principle
stipulates that nonequilibrium steady states are characterized
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by the average currents and the average density. For Markov
jump processes, the asymptotic fluctuations of a nonequilib-
rium steady state, however, are not dictated by these average
properties alone.

Developments in large deviation theory, in particular, the
level-2.5 formalism, have provided a general characterization
of fluctuations away from the average behavior in Markov
jump processes and diffusions [18–20]. In this framework,

(a)

(b)

FIG. 1. (a) A schematic of the stochastic pump under consid-
eration. Symmetric barriers Bij and energy levels Ei parametrize
Arrhenius rates and are varied periodically in time to generate a cur-
rent. The corresponding nonequilibrium steady state representation
of the pump has no time dependence, but rather rates that break
detailed balance. (b) The time-periodic steady state probabilities for
each site on the graph are shown over an entire period τ . The solid
lines show the time-dependent occupation of the pump. The dashed
lines show the average occupancy per period, a property matched by
the corresponding steady state.
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both the average currents and their fluctuations are uniquely
determined by the empirical density,

ρx = 1

tobs

∫ tobs

0
dt δz(t),x, (1)

with z(t) denoting the state at time t , and the empirical flow,

qyx = 1

tobs

∫ tobs

0
dt δz(t−),xδz(t+),y, (2)

which, roughly, counts the number hops from state x to y.

It is important to note that the empirical flow contains more
information than the empirical current; the latter specifies only
the difference between the flow in the forward and reverse
directions jxy = qxy − qyx. For example, the empirical current
would not distinguish between a trajectory in which there are
100 x → y hops and 80 y → x hops from one in which there
are 20 x → y hops and 0 in the opposite direction, while the
flows would be dramatically different. The large deviation rate
function I (ρ,q) quantifies the rate of decay of probability of a
joint observation of density and flow,

P (ρ,q) � exp[−tobsI (ρ,q)]. (3)

The symbol � indicates a logarithmic equivalence between
I (ρ,q) and limtobs→∞ −1/tobs ln P (ρ,q). For both jump pro-
cesses and diffusions, the rate function I can be calculated
explicitly [18,19]. Once the joint rate function for empirical
density and empirical flow is known, fluctuations in currents
can be computed via the contraction principle [21].

The large deviation formalism suggests a stricter require-
ment for dynamical equivalence among jump processes: If
the asymptotic form of the fluctuations is to be accurately
captured, then it is not the average currents but rather the
average flows that must be used to describe the dynamics
of a nonequilibrium steady state; a detailed discussion is
provided in the Supplemental Material [22]. This is a more
rigid prescription, as detailed below. Further, these insights
motivate a solution to the mapping problem between stochastic
pumps and nonequilibrium steady states that preserves the
fluctuations. Interestingly, in order to optimally describe
current fluctuations of a stochastic pump, the corresponding
nonequilibrium steady state must have a lower average entropy
production rate than that of the pump. The origin of this
“excess” entropy production can be explained with a simple
decomposition of the entropy production of the stochastic
pump [23–25].

The nonequilibrium steady state representation of the pump
satisfies a universal lower bound on the magnitude of its
current fluctuations, dictated by the total entropy production
less the excess [14,15,26]. As a consequence of this splitting,
we demonstrate that, in a perturbative limit, stochastic pumps
satisfy a universal bound on their current fluctuations, dictated
by the entropy production of the corresponding steady state.
We also probe the breakdown of this limit under strong driving,
as discussed further in the Supplemental Material [22]. Taken
together, these insights offer a powerful set of design principles
for translating between stochastic pumps and steady states as
well as a potentially useful technique for theoretical analysis
of systems under time-dependent driving.

To illustrate our mapping, we consider a simple model of
a stochastic pump: a single particle hopping with Arrhenius

rates on a four-state graph. We vary two energy levels and
one barrier periodically in time, which provides a time-
dependent perturbation that generates a nonvanishing current,
as permitted by the no-pumping theorem [4–6]. This setup is
depicted in Fig. 1(a).

The pump achieves a periodic steady state, which can be
calculated numerically by integrating

p
ps
i (t + s) =

∫ s

t

Wij (t + t ′)pps
j (t + t ′)dt ′. (4)

Here, p
ps
i (t) is the probability of being in state i at time t and

W (t) is the continuous time rate matrix for the dynamics at
time t. The periodic steady state satisfies

p
ps
i (t + τ ) = p

ps
i (t), (5)

where τ is the period of the pumping protocol. Note that, by
construction, W (t) satisfies detailed balance at each point in
time. The Arrhenius rates determine the instantaneous rate
matrix

Wij (t) = e−β(Bij (t)−Ej (t)) for i �= j,

Wii(t) = −
∑
i �=j

Wij (t),

where Ej (t) denotes the energy level of state j and Bij (t) =
Bji(t) is the barrier height. In our example, the only time-
dependent quantities are

E3(t) = sin(2πt/τ ) + 1,

E4(t) = sin(4πt/τ ),

B13(t) = sin(2πt/τ ). (6)

The periodic solution is plotted in Fig. 1(b).
We aim to find a time-independent rate matrix W ss that

mimics the stochastic pump and matches its fluctuations.
Following Ref. [17], we let Wij = W ss

ij p̂j , where p̂j is the
average occupancy in the periodic steady state and write

Wij = Sij + Aij , (7)

where S is a symmetric, stochastic matrix and A is an anti-
symmetric matrix. The symmetric part of this decomposition is
related to the “activity” of a trajectory [27,28]. The continuous
time rate matrix for the dynamics is then given by

W ss = (S + A)P−1, (8)

where P is a diagonal matrix with Pii = p̂i , the steady state
probability of site i. If we further impose the constraint that the
steady state currents agree with the periodic average current
along each edge,

ĵij =
∫ τ

0
dt Wij (t)pps

j (t) − Wji(t)p
ps
i (t), (9)

then the antisymmetric part of the rate matrix is uniquely
identified,

Aij = 1
2 ĵij . (10)

The rate matrix W ss describes a probability conserving
stochastic process, and, as a result, the form ofS is constrained,
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but only weakly. In particular, it must be the case that, for
off-diagonal elements

Sij � |Aij | (11)

and ∑
j

Sij = 0, (12)

which ensures that W ss is a Metzler matrix.
Though the rate matrix is not uniquely specified, any valid

choice of S results in a stochastic process with identical
average currents and average occupancy statistics. The same
cannot be said for the fluctuations. The freedom in S can be
directly represented by noting that any valid off-diagonal entry
in the matrix can be written

Sij = cij |Aij |, cij > 1. (13)

Due to symmetry, there are N (N − 1)/2 choices to make.
Indeed, the rate matrices resulting from different choices of S
yield different average entropy production rates, given by

σ̂ij = ĵij ln
cij |ĵij | + ĵij

cij |ĵij | − ĵij

. (14)

The cij values can be varied independently so long as they
meet the constraint cij � 1, meaning that the total entropy
production can be made arbitrarily small by taking cij large.

Raz et al. [10] suggest choosing S so that the average
entropy production rate along each edge is the same in
the stochastic pump and the nonequilibrium steady state
representations. This choice, which we denote S〈σ 〉, uniquely
specifies a rate matrix and also guarantees that the average
current, occupancy, and entropy production rates are preserved
by the map. However, the asymptotic fluctuations in entropy
production and current are dramatically different.

To demonstrate this, we computed the entropy production
and current large deviation rate functions for both the stochas-
tic pump and the nonequilibrium steady state representation,
shown in Fig. 2. To calculate the rate functions, we first
compute the scaled cumulant generating functions for entropy
production ω and current j ,

ψω(λ) = lim
t→∞

1

t
ln〈e−λω〉, ψj (s) = lim

t→∞
1

t
ln〈e−sj 〉. (15)

For the nonequilibrium steady state representation, the cumu-
lant generating functions can be calculated exactly by Cramér
tilting [21]. In the case of the stochastic pump, the averages
in (15) can be directly evaluated in the time-periodic steady
state, meaning that the cumulant generating function can be
numerically computed as

ψω(λ) = 1

τ
ln

∑
j

∫ τ

0
Wij (t ; λ)pps

j (t), (16)

where W (t ; λ) is the tilted rate matrix for entropy production
[29]. We use the Gärtner-Ellis theorem to compute the large
deviation rate functions by first computing the scaled cumulant
generating function and then performing a Legendre-Fenchel
transform [21].

Figure 2(b) shows the entropy production rate function with
W ss = (S〈σ 〉 + A)P−1. Note that, while the averages agree, the

(a)

(b)

FIG. 2. (a) The large deviation rate function for the current around
the upper cycle (see Fig. 1) 1 → 2 → 3 → 1 is shown for the stochas-
tic pump (blue, solid gray), the nonequilibrium steady state with the
same average entropy production along each edge as the pump (light
green, dot-dashed), and the nonequilibrium steady state with the same
average flow along each edge as the pump (red dots). While the
nonequilibrium steady state with S〈σ 〉 has the same average current,
the character and extent of its fluctuations are extremely different.
Choosing S〈q〉 preserves even very rare fluctuations in current.
(b) The large deviation rate functions for entropy production reveal
that the steady state that recapitulates the current fluctuations has
a smaller average entropy production. Furthermore, the extent of
entropy production fluctuations in the corresponding steady state
is much less pronounced (red innermost curve). Thus pump rate
function for entropy production is shown in blue (solid) and enhanced
fluctuations relative to S〈σ 〉, which is shown in light green (dot-
dashed).

nature of the entropy production fluctuations is quite different.
The steady state with the matching average entropy production
has a notably fatter tail for large entropy production rates.

Excess entropy production. In order to match the fluctu-
ations in current, we instead choose S so that the average
empirical flows are accurately captured by the dynamics. In
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particular, we let

S〈q〉 = q̂ij − 1
2 ĵij ⇐⇒ Wij = q̂ij , (17)

where q̂ij denotes the average flow along edge ij in the
periodic steady state. This choice has the additional advantage
of simplicity: The dynamics produces the correct average
number of hops in both directions along each edge of
the network. We note that for high-dimensional networks,
measuring all of the detailed edge currents or flows could be
a formidable challenge. Nevertheless, biological motors have
been successfully modeled as Markov jump processes with a
small number of distinct ligation states [30] and engineered
nanodevices typically have only a few states [31]. Because
S does not affect the antisymmetric part of the rate matrix,
the average currents along each edge are equivalent in both
the stochastic pump and the nonequilibrium steady state.
As illustrated by Fig. 2(a), choosing S〈q〉 leads to a striking
agreement between the current fluctuations of the stochastic
pump and the corresponding steady state.

However, with the choice of S〈q〉, both the average entropy
production rate and its fluctuations in the nonequilibrium
steady state representation differ markedly from the corre-
sponding stochastic pump, as shown in Fig. 2(b). The “excess”
entropy production has a physical origin and can be explained
with a natural decomposition of the stochastic pump entropy
production. Unlike nonequilibrium steady states, which can
only produce entropy around closed cycles, stochastic pumps
can produce entropy without completing a cycle [25]. We
decompose the total stochastic pump entropy production
rate into a contribution from the steady state, akin to the
“housekeeping heat,” and the excess associated with the
pumping protocol [23,24],

σ pump = σ ss + σ ex, (18)

where

σ ss
ij = ĵij ln

q̂ij

q̂j i

(19)

and

σ ex
ij = 1

τ

∫ τ

0
jij

(
ln

qij

qji

− ln
q̂ij

q̂j i

)
. (20)

The second law of thermodynamics ensures that both σ pump

and σ ss are non-negative on average. This decomposi-
tion is analogous to the decomposition of entropy pro-
duction used to describe the housekeeping heat, i.e., the
amount of heat required to maintain a nonequilibrium steady
state [23–25].

The excess entropy produced by the stochastic pump σ ex is
also non-negative. The inequality

1

τ

∫ τ

0
jij ln

qij

qji

� ĵij ln
q̂ij

q̂j i

(21)

is known as the log-sum inequality and follows directly from
Jensen’s inequality, because qij (t) > 0 and x ln x is a convex
function, as detailed in the Supplemental Material [22] and
Ref. [32]. In the adiabatic limit, the system remains in the
instantaneous equilibrium distribution and σ ex vanishes. In this

limiting case, S〈σ 〉 = S〈q〉. That is, for slow driving, entropy is
only produced in the long time limit if probability is pumped
through the network on average. While one might hope to
match both the current and entropy production fluctuations
when mapping a stochastic pump to a nonequilibrium steady
state, or vice versa, this can only be achieved if the pumping
protocol is adiabatic. As a consequence, in the inverse mapping
problem, a pump protocol cannot generally be designed
to mimic both current and entropy production fluctuations
because the average entropy productions only agree in the
adiabatic limit. Choosing the time-independent rate matrix
so that it gives the steady state entropy production of the
stochastic pump, that is, choosingS〈q〉, yields a coarse graining
that is consistent with the physical mechanism by which
entropy is produced in the pump.

In a stochastic pump, the hopping statistics along each
edge need not be Poissonian, even in the adiabatic limit [33].
Therefore, the instantaneous dynamics of the nonequilibrium
steady state, for which all transitions are purely Poissonian,
may not perfectly recapitulate the behavior of the pump. An
effective dynamics can be constructed by a periodic solution
via Floquet Theory, an analysis performed in the Supplemental
Material [22]. In the limit that time-periodic perturbations
to the hopping rates are small, the nonequilibrium steady
state representation describes the dynamics of the pump at all
times, but for sufficiently strong driving the correspondence in
fluctuations weakens. Numerical simulations using the kinetic
Monte Carlo technique provide additional support that this
correspondence is nevertheless robust (see the Supplemental
Material [22]), and emphasize that statistics converge to the
large deviation form on time scales that can easily be accessed
in simulations and experiments.

The mapping determined by the choice (17) yields a
universal bound on current fluctuations in weakly driven
stochastic pumps, akin to the thermodynamic uncertainty
relations recently discovered for nonequilibrium steady states
[14,15,26,34,35]. Distinct behavior can be achieved with
random driving: Barato and Seifert recently showed that,
through the use of a driving protocol that changes at stochastic
times, current fluctuations can be suppressed without incurring
significant dissipation [36]. For the deterministic protocols
considered here, in the perturbative limit, the rate function
for any generalized current j is subject to a quadratic
bound determined by the steady state entropy production
rate

I pump(j ) � (j − ĵ )2

4ĵ 2/σ ss
. (22)

The bound is maximally tight because incorporating the excess
entropy production only reduces the curvature of the quadratic
form. The lack of Poisson statistics for the pump suggests that
the bound should not hold in full generality, but numerical
evidence demonstrates that it is quite robust.

It is a pleasure to thank Hugo Touchette, Todd Gingrich,
Suri Vaikuntanathan, and Phillip Geissler for their useful
feedback on this work. Funding for this research was pro-
vided by the National Science Foundation Graduate Research
Fellowship.
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