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ABSTRACT
Many methods to accelerate sampling of molecular configurations are based on the idea that temperature can be used to accelerate rare
transitions. These methods typically compute equilibrium properties at a target temperature using reweighting or through Monte Carlo
exchanges between replicas at higher temperatures. A recent paper [G. M. Rotskoff and E. Vanden-Eijnden, Phys. Rev. Lett. 122, 150602
(2019)] demonstrated that accurate equilibrium densities of states can also be computed through a nonequilibrium “quench” process, where
sampling is performed at a higher temperature to encourage rapid mixing and then quenched to lower energy states with dissipative dynamics.
Here, we provide an implementation of the quench dynamics in LAMMPS and evaluate a new formulation of nonequilibrium estimators for
the computation of partition functions or free energy surfaces (FESs) of molecular systems. We show that the method is exact for a minimal
model of N-independent harmonic springs and use these analytical results to develop heuristics for the amount of quenching required to
obtain accurate sampling. We then test the quench approach on alanine dipeptide, where we show that it gives an FES that is accurate near
the most stable configurations using the quench approach but disagrees with a reference umbrella sampling calculation in high FE regions.
We then show that combining quenching with umbrella sampling allows the efficient calculation of the free energy in all regions. Moreover,
by using this combined scheme, we obtain the FES across a range of temperatures at no additional cost, making it much more efficient than
standard umbrella sampling if this information is required. Finally, we discuss how this approach can be extended to solute tempering and
demonstrate that it is highly accurate for the case of solvated alanine dipeptide without any additional modifications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176700

I. INTRODUCTION

A major challenge in molecular dynamics (MD) simulations
is poor sampling of conformational landscapes because free energy
barriers that are large relative to the thermal energy scale kBT
are traversed at rates much lower than the duration of a typical
simulation.2,3 A wide variety of approaches relying on sampling of
equilibrium distributions have been proposed4 to circumvent this
problem, which can be generally classified into (a) those that seek
to lower free energy barriers by adding a bias or changing the
potential that is being sampled5,6 or (b) those that use higher temper-
atures of all or some degrees of freedom to accelerate transitions.7,8

Other approaches harness nonequilibrium fluctuation theorems to
estimate equilibrium free energies by averaging over many realiza-
tions of a nonequilibrium transformation.9–11 However, these non-
equilibrium approaches have not been widely adopted for chemical
problems because they are difficult to converge due to the large
variance in work performed and the largest contributions to the
equilibrium average being dominated by rare fluctuations.

Reference 1 proposes a class of estimators based on an exact
reweighting of the samples gathered during a nonequilibrium pro-
cess that follows a dissipative dynamical scheme, starting with
configurations that are well sampled from an equilibrium density,
e.g., the Boltzmann distribution (see also Ref. 12, Chap. 5, and
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Refs. 13 and 14). Conceptually, facile sampling at high temperature
allows mixing between free energy basins, and then, the process of
“quenching” allows one to map out the lower energy portion of the
free energy basins. This method possesses several advantages; it is
unbiased and only requires the knowledge of the starting probability
density ρ0 up to a constant, unlike the annealed importance sam-
pling15 (AIS) method, which requires computing a posterior ratio of
sample means. Furthermore, it was proven in Ref. 1 that the estima-
tor has lower variance than a direct estimator and simulations can
be run in parallel, which makes the methodology naturally suited to
the architecture of high-performance computing clusters. The aim
of this paper is to investigate how to use this method to compute
partition functions and free energy surfaces (FESs) for molecular
systems.

To this end, we derive a formulation of these nonequilib-
rium quench estimators for molecular systems and critically assess
the efficacy of this approach. We demonstrate that the method
is exact for a harmonic system where analytical results are avail-
able, and in doing so, we obtain heuristic rules for the required
amount of sampling. We then demonstrate on the simple test sys-
tem of alanine dipeptide that, because the method emphasizes low
free energy regions, it is not a competitive approach for computing
full free-energy surfaces. Nevertheless, we find that a combination
of quenching with umbrella sampling (US) provides a highly effi-
cient way to compute a full FES for this system, simultaneously
giving FESs at many different temperatures. Finally, we expand upon
the quench method and show that it can be used as a nonequi-
librium solute-tempering approach with highly accurate results for
a solvated peptide. The quenching dynamics are implemented in
LAMMPS16,17 and analysis methods provided as open source Python
scripts, meaning that our method can be easily deployed on other
problems.

II. THEORY AND METHODS
A. An equilibrium estimator from nonequilibrium
trajectories

Let us denote the microstate of the system in phase space by the
vector x = (q, p) ∈ R2d and q, p ∈ Rd, where d ≡ 3n is the number of
degrees of freedom (DOF) in the n-atom system. An average observ-
able property ϕ of the system can by computed as an integral over
all possible configurations, weighted by the equilibrium probability
density,2,3

⟨ϕ⟩ = ∫
dx ϕ(x)ρ(x)
∫dx ρ(x)

. (1)

A typical example of ρ(x) would be the Boltzmann distribution,

ρβ(x) =
e−βH(x)

∫dx e−βH(x)
≡

e−βH(x)

Q(β)
, (2)

where β = 1
kBT , kB is Boltzmann’s constant, T is the temperature, and

H is the Hamiltonian (total energy function) of the system.2,3 Here,
Q(β) is the canonical partition function.

To compute equilibrium averages using molecular dynamics,
we typically replace the expectation (1) by a time average along a
trajectory Xe

(t) along which configurations appear in proportion

to ρβ(x). This can be done using Markov chain Monte Carlo or
thermostated molecular dynamics.2,3 In this case,

⟨ϕ⟩ ≈
1
τ∫

τ

0
dt ϕ(Xe

(t)), (3)

with equality in the limit as τ →∞.
As an alternative to running a very long trajectory, if we already

had configurations well sampled from ρ(x), then we could also com-
pute this same average by an “initiate-and-propagate” procedure,
where we draw starting points Xe

i (0) from ρ(x) and propagate our
equations of motion to get N trajectories of length τshort, {Xe

i (t)},
computing observables as an average over the trajectory and over
initial configurations,

⟨ϕ⟩ ≈
1
N

N

∑

i=1

1
τshort

∫

τshort

0
dt ϕ(Xe

i (t)), (4)

with equality in the limit as N →∞ for any τshort > 0. The advantage
of such a procedure would be that each trajectory can be simulated
independently, making the algorithm trivially parallelizable.

Now, suppose we wanted to do such a procedure, but the
dynamics do not sample the stationary distribution ρ using, e.g., the
differential equation

Ẋ(t) = b(X(t)), (5)

Where b(x) is a vector-field to be specified that does not preserves
ρ(x), i.e., ∇ ⋅ (b(x)ρ(x)) ≠ 0, where ∇ corresponds to the phase
space gradient { ∂

∂q1
, ∂
∂q2

, . . . , ∂
∂qd

, ∂
∂p1

, ∂
∂p2

, . . . , ∂
∂pd
}. The change in

phase space volume associated with a nonequilibrium dynamical
process is quantified by a Jacobian factor,

J(t) = exp(∫
t

0
∇ ⋅ b(X(s)) ds), (6)

as derived in Appendix A.
Reference 1 makes use of the fact that Eq. (4) can be extended

to this more general case of motion generated by b by introduc-
tion of the density scaled by this Jacobian factor as long as points
can be sampled from the initial density ρ(x). In this case, esti-
mates are computed for a subset of all phase space by propagating
the non-equilibrium trajectories until they reach the boundaries
of that subset of phase space, which, in practice, was done by
terminating trajectories at fixed maximum and minimum energy
values Emax and Emin. The resulting estimator over N trajectories is
given by

⟨ϕ⟩ ≈ lim
N→∞

1
N

N

∑

i=1

∫

τ+i (Emin)

τ−i (Emax)
dt ϕ(Xi(t))ρ(Xi(t))J(t)

∫

τ+i (Emin)

τ−i (Emax)
dt ρ(Xi(t))J(t)

, (7)

where τ+i (Emin) and τ−i (Emax) are the times that trajectory i reached
the fixed energy boundaries when propagating the non-equilibrium
dynamics forward and backward in time (we emphasize that here
the integration times vary for each starting point).
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As in Ref. 1, we will use the equations of motion corresponding
to zero temperature Langevin dynamics, which we term “quench,”

⎧
⎪⎪
⎨
⎪⎪
⎩

Q̇ =M−1P,

Ṗ = −∇U(Q) − γP,
(8)

for which the Jacobian is

J(t) = exp (−dγt). (9)

This method is easy to implement for molecular systems by
adapting the BAOAB scheme18 (see Appendix B).

Backward-in-time trajectories from initial points are generated
by following the same dynamical scheme using a negative γ, after
reversing the initial momenta. This is derived by applying the equa-
tions of motion to the time-reversed phase space coordinates QR

(t)
= Q(−t) and PR

(t) = −P(−t).
Because Eq. (8) is dissipative, we can use it to propagate tra-

jectories from high energy to low energy or from low energy to
high energy using a negative γ. With this scheme, we can compute
Boltzmann averages at the starting inverse temperature β0 by first
sampling from ρβ0(x)∝ exp (−β0H(x)) and propagating N trajec-
tories with our quench algorithm forward and backward in time
using the formula

⟨ϕ⟩0 ≈
1
N

N

∑

i=1

∫

τ+i
τ−i

dt ϕ(Xi(t))e−β0H(Xi(t))−dγt

∫

τ+i
τ−i

dt e−β0H(Xi(t))−dγt
. (10)

Here, we no longer indicate the dependence of τ±i on energy for
brevity. An extension of Eq. (10) to calculate averages at other
temperatures above and below β0 will be discussed in Sec. II B.

We note that Eq. (10) is a biased estimator since it computes
expectations over ρβ0 conditional on H(x) ∈ [Emin, Emax]. To make
this bias negligible, we can adjust the values of Emin and Emax. To this
end, note that during a (forward) quench, the value of total energy
Etot = H(X(t)) will decrease, while dγt will increase, resulting in a
time where the arguments of the exponentials are maximized that
depends on β0. In order to get a converged average, this time must
be contained within the range (τ−, τ+), and so the energy levels, in
particular, Emin, must be chosen as this is the case. Our method for
doing so is discussed in Sec. IV.

B. Calculations of free energies and partition
functions

As mentioned earlier, the principal challenge of computing
quantities from MD simulations is that high (free) energy barriers
at a temperature of interest prevent proper sampling of all relevant
configurations with proper weights. Since it can be easier to sample
at high temperature, it is tempting to sample at high temperature
and directly reweight samples to lower temperature; for example, to
estimate Q(β), we can write

Q(β) = ∫ dx e−βH(x) = ∫ dx e−βH(x)(
e−β0H(x)

e−β0H(x)
)

= ∫ dx e(β0−β)H(x)e−β0H(x). (11)

Hence, we can reweight samples from β0 to evaluate the relative
value of Q(β),

Q(β)
Q(β0)

= ⟨e (β0−β)H)
⟩0, (12)

which is the central idea of free energy perturbation.2 The challenge
is that samples from ρβ0(X) do not have good overlap with ρβ(X)
unless β ≈ β0, so this estimate could have high variance in prac-
tice, which can be mitigated using simulated annealing or simulated
tempering.19–21

The same quantity in Eq. (12) can be computed with the quench
estimator [Eq. (10)],

Q(β)
Q(β0)

≈
1
N

N

∑

i=1

∫

τ+i
τ−i

dt e−βH(Xi(t))−dγt

∫

τ+i
τ−i

dt e−β0H(Xi(t))−dγt
. (13)

By quenching forward in time, low energy samples that are more rel-
evant at a lower temperature are generated, which should result in a
much more robust calculation than reweighting from samples gen-
erated only from β0 at equilibrium. Using a similar manipulation, we
can compute the average of any observable ϕ(X) at β using samples
generated from β0,

⟨ϕ⟩ = ⟨ϕe(β0−β)H
⟩0/⟨e(β0−β)H

⟩0

≈
1
N

N

∑

i=1

∫

τ+i
τ−i

dt ϕ(Xi(t))e−βH(Xi(t))−dγt

∫

τ+i
τ−i

dte−β0H(Xi(t))−dγt
(

Q(β)
Q(β0)

)

−1

, (14)

where Q(β)/Q(β0) is computed via Eq. (13).
For a coordinate (possibly a vector) defined by a function S(x),

the FES or potential of mean force (PMF) is given up to a constant
factor by

F(s,β) = −
1
β

log (⟨δ(S − s)⟩), (15)

where δ is the Dirac delta function.22 Using Eq. (14), we then obtain
our final result, which shows how the FES can be computed using
quench trajectories,

e−βF(s,β)
≈

1
N

N

∑

i=1

∫

τ+i
τ−i

dt δ(S(Xi(t)) − s)e−βH(Xi(t))−dγt

∫

τ+i
τ−i

dt e−β0H(Xi(t))−dγt
. (16)

This estimator allows us to compute the PMF at a range of
temperatures β above and below β0 using a single set of trajectories.

Because the exponential decay e−dγt suppresses contributions at
long forward times and the exponential increase of H(Xi(t)) does
so for large negatives times, we also considered running simulations
for fixed forward and backwards time where τ+ ≫ τ+i (Emin) and
τ− ≪ τ−i (Emax). In this case,

e−βF(s,β)
≈

1
N

N

∑

i=1

∫

τ+

τ− dt δ(S(Xi(t)) − s)e−βH(Xi(t))−dγt

∫

τ+

τ− dt e−β0H(Xi(t))−dγt
, (17)
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where now the integration limits are fixed for all runs. In Sec. IV,
we will give a heuristic for how long quench trajectories should be
run. In practice, to generate results, we run fixed length simulations
using that heuristic from many initial points, then pick energy cut-
offs, and then use the estimator given by Eq. (16), which did prove
to be more accurate than Eq. (17). This strategy allowed us to test
both estimators and works well, in practice, but does require more
total simulation time than if a perfect energy cutoff were known
a priori.

Finally, we note that Ref. 14 proposes another exact estimator
from the same type of trajectories,

⟨ϕ⟩ ≈
1
N

N

∑

i=1
∫

τ+

τ−
dt

ϕ(Xi(t))ρ(Xi(t))J(t)

∫

t−τ−

t−τ+ dt′ ρ(Xi(t′))J(t′)
, (18)

where τ+ and τ− are constant. We also evaluate this formula for a test
case in the supplementary material but find that it is more difficult to
use, in practice, for molecular systems because (a) it requires obtain-
ing data from (τ−–τ+, τ+–τ−), which is a strictly larger time window
than in Eq. (16), and (b) the long reverse quench to time τ−–τ+ can
cause the MD simulation to become unstable as the kinetic energy
grows exponentially, resulting in simulations crashing. Hence, we
do not pursue it further in this work.

III. IMPLEMENTATION
We implemented quench dynamics in LAMMPS16,17 using the

procedure described in Appendix B, with a user-defined “fix,” and
run trajectories using the LAMMPS python interface. Then, we run
many parallel trajectories in a Python framework using the paral-
lel scripting language Parsl,23 which also interfaces with common
high-performance computing queuing systems. We also perform
analysis in parallel using parsl. LAMMPS source code and all run
and analysis scripts are provided in a github repository for this paper
(https://github.com/hocky-research-group/quench_paper_2023).

IV. RESULTS
A. Computing the partition function of independent
harmonic springs through quenching

To confirm the validity of the quench approach for a molecular
system, as well as to check our implementation, we first start with
a system for which we know the ground truth. We chose to study
a system of N independent harmonic springs, with a Hamiltonian
defined by

H(X) =
N

∑

i=1
(
∣Pi∣

2

2m
+

1
2

mω2
∣Qi∣

2
). (19)

Because these springs are independent, this is equivalent to
3N one-dimensional harmonic oscillators defined by the simple
Hamiltonian

H(q, p) =
p2

2m
+

1
2

mω2q2. (20)

FIG. 1. Mean total energy (top) and mean kinetic energy (bottom) with respect
to reduced time (γquenchτ) for N = 1000 springs, varying γquench, scaled by
the equilibrium energy given by equipartition. Quenching is performed from
2000 starting points. Circles indicate the mean starting energies before quench-
ing forward and backward in time. For small γquench, the mean total energy

and mean kinetic energy follow an exponential decay with time constant γ−1

(dashed line).

The partition function for this system is separable such that

Q3N (β) = Q3N
1 (β) = (∫ dq dp e−

βp2

2m −
β
2 mω2q2

)

3N

= (

√

2πm
β
×

√

2π
βmω2 )

3N

= (
2π
βω
)

3N

. (21)

We can therefore benchmark our quench approach by com-
puting the ratio of partition functions at two different temperatures
using Eq. (13) and compare to the exact value, which is given by
(β0/β)3N .

Using LAMMPS, we sample N independent harmonic springs
in 3D with identical masses m = 1.0 and identical oscillation fre-
quencies ω =

√

5, in reduced units. We first generate 2000 start-
ing points using Langevin dynamics24 with friction coefficient γLD
= 0.01 and time step Δt = 0.001 in reduced units. To do so, we
first equilibrate the system for 107 steps (τ = 104 in reduced LJ
time units) at β = 1. Then, we run production simulation for
2 × 107 steps and save 2000 starting points for further “quench”
simulations.

In Fig. 1, we show the behavior of the energy of the system
when running quench simulations using the EOM described by
Eq. (8) forward and backward in time for several values of γquench.
We observe an overall exponential decay of average total energy at
small γ with respect to γquencht, a unitless “time” that we find serves
as a good progress coordinate. In contrast, when γquench is large,
we observe large deviation from standard exponential decay, with
a low-frequency oscillation.

To understand this behavior, we can solve the EOM of a 1d
system exactly given an initial condition (q0, p0),
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E(t) exp (γt) =
2m2ω4q2

0 + 2mω2γq0p0 + 2ω2p2
0

m(4ω2
− γ2
)

+
m2ω2γq2

0 − γp2
0

2m
√

4ω2
− γ2

sin(
√

4ω2
− γ2 t)

+
m2ω2γ2q2

0 − 4mω2γq0p0 − γ2p2
0

2(4ω2
− γ2
)

× cos(
√

4ω2
− γ2 t). (22)

The magnitude of the ratio between terms scales for γ < ω as
O(1) : O(γ/ω) : O(γ2

/ω2
) such that the first term dominates for

small γ. As γ approaches ω, then oscillations appear with a period
of π(ω2

/γ2
− 1/2)−1/2 when plotted against γt. Similarly, we can

solve an expression for kinetic energy and find that in the small γ
limit, the mean kinetic energy also decays exponentially with respect
to time. In the quasi-static quenching limit, we can approximate
all springs as independently following the same exponential decay,
and therefore, the sum of their energies also decays exponentially,
E(t) ≈ E(0)e−γt . For this situation, we can compute the partition
function,

Q(β)∝∫
∞

−∞
exp (−βE0e−γt

− dγt) dt

=∫

∞

0

1
γ

exp (−βE0u)ud−1 du

=
(d − 1)!

γ
(βE0)

−d. (23)

This gives the correct result for the ratio of partition functions,
(β/β0)

−d. Moreover, we could calculate Q(β) using a saddle point
approach and find that the exponential term is dominated by its
value when γt = ln(β/β0) using the fact that E0 ≈ d/β0 for Harmonic
oscillators.

Because the mean kinetic energy decays exponentially with
respect to time starting at a value of d/(2β0), at this particu-
lar moment t = γ−1 ln(β/β0), the kinetic energy obtains a value of
d/(2β) corresponding to a temperature T. In real simulations, it
is impossible to run to infinite times, so this harmonic model sug-
gests that we can guess how long to run by choosing γ(τ+ − τ−)
> ∣ln (β/β0)∣ for a target β if we want to use the infinite time approx-
imation as in Eq. (17). To confirm this for the harmonic system,
we show in Fig. S1 that convergence of the ratio of partition func-
tions reaches this limit where Eq. (17) holds once γ(τ+ − τ−) exceeds
this value [2 ln(2) ≈ 1.4]. When γquench approaches ω and the expo-
nential decay of energy does not hold, the partition function ratio
converges to an incorrect value.

Finally, we test the accuracy of our primary estimator Eq. (13).
To do so, we take the same quenches performed for Fig. 1 and
pick τ+ and τ− as the maximum final energy of the 2000 for-
ward quenches and the minimum of the 2000 reverse quenches.
In Fig. 2, we show that our quench estimator is highly accurate.
Figure 2(a) shows that the estimator gets more accurate with an
increasing number of springs, despite the increasing phase space vol-
ume that must be sampled. Figure 2(b) shows the effect of varying
the initial temperature T0, with more accurate results when T0 is

FIG. 2. Absolute relative error in the ratio of partition functions at two different
temperatures T0 and T = 1 for a system of independent harmonic springs using
Eq. (13). (a) Error computed starting from T0 = 2 and varying the number of
springs for two different quench rates. (b) Error computed for fixed N = 1000
springs when varying starting temperature at two different quench rates. Two other
estimators are compared for this setup in Fig. S3.

higher than T as intuitively expected. Accuracy is improved substan-
tially by decreasing the quench rate γ but at the expense of longer
simulations.

B. Computing the FES for alanine through quenching
Having demonstrated that we are able to compute partition

functions for a toy system, we are now interested in whether we
can compute PMFs for a molecular system through a quench-
ing procedure (where partition functions are not a very useful
quantity on their own). We first test our approach by computing
Eq. (16) for the test case of alanine dipeptide in vacuum, which
has two major conformations (one of which has sub-populations)
separated by a relatively large energy barrier and whose configu-
rations are well captured by considering its FES in the space of
two backbone dihedral angles ϕ and ψ. This FES has been exten-
sively characterized by a number of enhanced sampling approaches
and serves as a prototypical benchmark system, although one
which is quite easy to sample for some approaches, such as
metadynamics.

Simulations of this molecule in vacuum were run using
the LAMMPS simulation package and using CHARMM 27 force
field without CMAP corrections.25 Equilibrium simulations are
performed using LAMMPS’s Langevin dynamics thermostat with
γBAOAB = 0.01 ps−1 and an MD timestep of δt = 1 fs. Umbrella sam-
pling5 was used to obtain reference free energy surface (FES). For
umbrella sampling, a harmonic biased potential with spring con-
stant 24.0 kcal/(mol rad2

) was added to 400 (20 × 20) windows
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FIG. 3. A comparison of FES between umbrella sampling and “quench” method. (a) FES computed from US at T = 300 K with 400 ns total sampling time. (b) FES computed
from “quench” at T = 300 K with T0 = 1200 K with γquench = 1 × 10−4 ps−1 and 104 starting points corresponding to ≈410 ns of total simulation time, of which data used in
computing Eq. (16) (including 10 ns for generating restart points) total ≈226 ns. (c) Comparison of FES values on a bin-by-bin basis. While the minima are captured, the high
free energy regions are not.

FIG. 4. A comparison of FES between US and “quench” combined with US. (a) FES computed from US at T = 300 K with 400 ns total sampling time after start point
generation. (b) FES computed from quench + US sampling with 400 ns total sampling time, including start point generation. Data used in computing Eq. (16) total ≈287.6 ns.
(c) Comparison of FES values on a bin-by-bin basis. The quench + US landscape agrees almost exactly with the US one.

along CVs given by backbone dihedral angles (Φ,Ψ). The system
was equilibrated for 400 ps at each window location, and then,
production runs were performed for 2 ns in each window. FES
was estimated at the target temperature of 300 K using Weighted
Histogram Analysis Method (WHAM) to combine the data26 and
was also computed for comparison using Eigenvector Method for
Umbrella Sampling (EMUS).27 Finally, for comparison, FESs were
computed using Well-Tempered MetaDynamics (WT-MetaD)6 in
PLUMED28,29 applied to ϕ,ψ with hills deposited every 500 steps,
a hill width of 0.35 rad in each direction, a hill height of 0.286 807
kcal/mol, and a bias factor of either 6 or 10 (see the supplementary
material); WT-MetaD runs were performed for up to 100 ns
although the FES estimate stopped changing within several nanosec-
onds. In “quench” simulations, the system was equilibrated for 10 ns
at T0 = 1200 K, and 10 000 starting points were drawn from a 10 ns
production simulation with frequency every 1 ps. Fixed time simu-
lations were performed with forward quenches of length 3.4γ−1 and

reverse quenches of length 0.6γ−1. For this length forward quench,
the final kinetic energy predicted by our exponential decay model
is equivalent to approximately T = 110 K, below where we want
to estimate. Times τ+i and τ−i were chosen from these data by his-
togramming the energies from the forward and reverse trajectories,
as shown in Fig. S4.

Figure 3 shows the comparison of FES computed by the
“quench” method with γquench = 1 × 10−4 ps−1, for which the total
amount of fixed time sampling was 400 ns, the same as that used in
a reference US reference, and the time used with energy cutoffs was
only 287 ns (see Table I). While the shape of the FES was captured
correctly using the “quench” method, only the lower free energy
regions were captured with high fidelity. As shown in Fig. 3(c),
quench results start to deviate from umbrella sampling results at ∼8
kcal/mol ≈13.5kBT. Since this is a relatively high cutoff, it demon-
strates that quench is applicable to molecular situations where the
entire FES over some coordinates is not needed. Moreover, with
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FIG. 5. (a) Reference US FES with 800 ns of simulation. (b) FES computed from quench + US using 50 quenches per window corresponding to 60 ns of total simulation
data, with ∼41 ns used to compute Eq. (16). (c) RMSD of free energy for bins with FE ≤20 kBT (in kcal/mol) compared to reference umbrella sampling as a function of total
sampling time, which is adjusted by changing the number of starting points used. The black dashed line shows comparison with WT-MetaD using bias factor 6 (see Fig. S10),
and open red circles show error when computing FES on reference data using EMUS rather than WHAM (see Fig. S9). (d) Comparison of FES values in (a) and (b) on a
bin-by-bin basis.

these simulations, we should be able to estimate FES at any tem-
perature in the range 200–2200 K based on the amount of forward
and reverse quenching performed, which would not be available
with CV based approaches; this advantage is explored much more
in Sec. IV C. We also note that this was obtained in a CV agnostic
manner.

We can also perform the calculations with larger γquench by a
factor of 10, yielding slightly worse but comparable results (Fig. S5),
showing that the important regions of the landscape can be captured
efficiently in tens of nanoseconds, which is similar to the conver-
gence speed of WT-MetaD6 (see also Sec. IV C). We can moreover
perform this calculation with a 10 or 100 times slower quench,
resulting in much more accurate results, but with a relatively small
improvement compared to the amount of additional sampling (Figs.
S6 and S7). Next, we show that if we wish to resolve the high free
energy regions in detail, it is possible to combine quenching and CV
based approaches.

C. Combining quenching and umbrella sampling
Because quenching does a good job capturing the low free

energy regions, we predicted that it could be combined with US
to produce an efficient sampling approach. By nature of intro-
ducing a harmonic potential, we obtain by construction a more
convex landscape, albeit one that can still be hard to sample due
to slow orthogonal degrees of freedom. To directly compute the
FES from our quench data, we also derived a modified version
of the WHAM equations following the derivation of Ref. 26 (see
Appendix D). Surprisingly, it turns out that we can use exactly
the same WHAM equations when β = β0 by realizing that Jaco-
bian J(t) is same among umbrella windows and the ratio of any
two umbrella windows are fixed over time. When we do not start
from the target temperature, we can estimate the biased densities in
from each window and combine them with the usual WHAM equa-
tions.30 In Sec. S5, we also show that we can apply the Eigenvector
Method for Umbrella Sampling27 (EMUS) with our quench data.
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FIG. 6. FES computed using only one bad CV. (a) FES computed from US on Ψ
with 40 ns total sampling. (b) FES computed from quench + US from T0 = 1200
on Ψ with ∼40 ns total sampling [28.5 ns used in computing Eq. (16)], showing
much more exploration.

EMUS is a meshless estimator like MBAR and other post-WHAM
approaches.27,31,32 In other words, it uses the true bias potentials
instead of approximate ones to estimate the weight of a sample
generated in one umbrella vs that in another. EMUS is more expen-
sive to apply than WHAM, and we did not find the results to be
significantly different; hence, we demonstrate that it works in the
supplementary material but include results from WHAM in the
main text.

We first tested combining these methods by taking start-
ing points generated by the equilibrium US procedure at T = 300
K and quench in the presence of the same harmonic bias with
γquench = 0.001 ps−1 for a forward time of 1γ−1 and a reverse time
of 1γ−1, with the idea that we can use our estimator to com-
pute unbiased weighted histograms in each position and then
combine the results with any standard free energy approach. We
note that this quench time can be thought of as approximately
increasing and decreasing the temperature by a factor of e, giving
access to temperatures between ∼110 and 815 K. For each win-
dow, we select an upper and lower bound to fix τ+i and τ−i as in
Sec. IV B.

Figure 4 shows the comparison of FES between US and quench
+ US. The resulting FES is almost identical between our reference
result and our newly computed surface up to the maximum range
accessed from US. We also show that this is the case when the
quench FES is computed using EMUS, when comparing to a ref-
erence FES computed by EMUS or by WHAM in Figs. S8 and S9,
respectively.

Although so far we have reported results for a total equiv-
alent amount of sampling time of 400 ns (with 287.6 ns being
used in the estimator), the results of quench + US can be obtained
much more quickly than that. In Fig. 5, we show that the full FES
converges much more quickly than that. In Fig. 5(b), we high-
light the case of 60 ns (43.2 ns used for the estimator) at which
point there is virtually no error and only some very high energy
regions are not fully sampled. Figure 5(c) shows that the error
is already minimal by ∼10 ns and stops decreasing by ∼200 ns.
Although the deviation between US and quench+US does not con-
verge to zero, we also show in this plot that this difference is much
smaller than that obtained when using a different method (WT-
MetaD) or even a different method of estimating the FES from
the same reference data (EMUS, open red circles). Thus, we do
not consider an error of 0.1 kcal/mol over the entire surface to be
significant.

Next, we show that quenching helps US when using a bad CV.
This is demonstrated by considering the case of US only along ψ,
which does not distinguish the positive and negative ϕ basins well.
Two sets of simulations using the same US parameters were run,
biasing at 20 windows along ψ using the same spring constant of 24.0
kcal/(mol rad2

). The reference US simulation used 2 ns per win-
dow, resulting in 40 total ns of simulation. For quenching, we use
666 starting points separated by 1 ps in each window, with γquench

= 0.001 ps−1 for γτ+ = 1, γτ− = −1 corresponding to an equivalent
amount of simulation time and 28.5 ns used in the estimator. The
FES computed from US and WHAM [Fig. 6(a)] shows that little
sampling is achieved. When adding quenching, the heating phase
allows the system to overcome some hidden energy barriers that are
not captured by bad CV ψ, resulting in a surface that captures all
minima relatively well but does not resolve the barrier between the
basins correctly.

Finally, we again emphasize that quenching, in principle,
allows estimating FES at various target temperatures using the
same simulation data. To quantify this, we tested whether we
could obtain the FES at a range of temperatures, quenching
from above, below, and in the middle. Using starting points drawn
from T0 = 75, 300, and 1200 K and three quench simulations,
we demonstrate that the FES can be obtained for a wide range
of temperatures above and below 300 K. In Fig. 7, we show the
bin-by-bin comparison with US for target temperatures T = 200,
300, and 400 K. In all but one case, the results are quite robust
across the whole FES. In contrast, US reweighted to other tem-
peratures using the WHAM equations performs poorly in all six
cases tested despite using twice the amount of total sampling data.
The one case shown where quench + US fails is sampling ini-
tial points from T0 = 300 K and estimating at T = 200 K, which
may be due to insufficient sampling in the chosen initial points
at T0 = 300 K that was not evident when estimating at higher
temperatures.
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FIG. 7. Comparison of the quality of FES computed by sampling at T0 and estimating at T . In each case, the x-axis shows the FES computed by 800 ns of US at a reference
temperature of either T = 200, 300, or 400 K. The y-axis shows the FES computed at T when starting at a low, medium, or high T0. For US (red circles), these are T0 = 200,
300, and 400 K, and for quench + US (blue circles), these are 75, 300, and 1200 K. US alone fails at extrapolating even by 100 K (33%), while quench + US is much more
robust. For US, the total simulation time is 800 ns, and for quench + US, γquench = 0.001 ps−1 and the total sampling time is 800 ns (see Table I). To be consistent, the FES
for quench + US is computed in all cases by estimating the unbiased density in each case and combining by WHAM, even though we could use our exact WHAM equation
for the T = T0 = 300 case.

V. PRELIMINARY EXTENSION TO SOLVATED SYSTEMS
Most MD simulations are run in solution, which adds thou-

sands of additional DOF from solvent molecules. We were con-
cerned that quenching could present difficulties in this case both (a)
due to numerical issues arising from the extensivity of the terms in
the exponential within our FES estimation formula and (b) due to
the problem of super-heating the solution. To mitigate these issues,
we propose a “solute-quench” approach (s-quench) in the spirit of
solute tempering.8 Here, we investigate a scheme where the solvent
degrees of freedom are evolved by Newtonian dynamics and the
solute degrees of freedom follow quench dynamics. Mathematically,
this is expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Q̇solute =M−1
solutePsolute,

Ṗsolute = −∇soluteU(Qall) − γPsolute,

Q̇solvent =M−1
solventPsolvent,

Ṗsolvent = −∇solventU(Qall).

(24)

For these equations, the Jacobian is still trivial to derive

J(t) = exp (−dsoluteγt). (25)

It is possible to implement this algorithm in LAMMPS with
same “fix” by simply choosing two groups of atoms to integrate
separately by two different integrators. We tested s-quench on ala-
nine dipeptide in water. Using CHARMM-GUI,33–35 we generated a
LAMMPS input file for alanine in a box of dimension 28 Å per side
with 752 water molecules. As in vacuum, the system is equilibrated
for 200 ps in each window, and then, the rest of the US protocol
is the same. Here, the forcefield used is CHARMM36m. We show
in Fig. 8 that this approach works and s-quench + US gives iden-
tical results to standard US in this case. Interestingly, due to the
small size of the solute relative to the solvent, energy fluctuations
make the histograms of minimum and maximum energy overlap.
Hence, for this case, we rely on the infinite time approximation
of Eq. (17).
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FIG. 8. A comparison of FES of alanine dipeptide in water between US and solute quench + US. (a) FES computed from umbrella sampling at T = 300 K using 800 ns
of total data. (b) FES computed from s-quench + US with T0 = 300 K using 400 ns of total data. (c) Bin-by-bin comparison of FES between these two cases shows exact
agreement.

VI. CONCLUSIONS
In the system of independent harmonic springs, a nearly expo-

nential decay of the mean total energy and the mean kinetic energy
has been observed in the limit of small γquench. With this observa-
tion, we can use E(t) = E(0)e−γt to predict the results of Eq. (10) or
Eq. (14). We found that these results give a good heuristic for how
long to run quench simulations in practice.

Quenching alone gave moderate performance for alanine in
vacuum if the desired quantity is a fast estimation of the entire FES
at a single temperature and would not be the method of choice at
least for this simple problem where, e.g., metadynamics is extremely
efficient as demonstrated in many papers. On the other hand,
quenching does give access to the FES at a range of temperatures in
a single shot, and so it may be efficient in cases where that is desired.
Moreover, we demonstrated that quench combined with US is accu-
rate and efficient across a range of temperatures. Quench + US can
also alleviate issues in US due to hidden slow unbiased CVs since
reverse quenching heats up the system and high free energy regions
are more likely to be sampled.

Here, we demonstrated that the WHAM equations also apply
to this method when starting temperature T0 is equal to target tem-
perature T and showed that it is possible to estimate the FES at other
temperatures using a density-based WHAM approach. It is known
that WHAM is not the most optimal method of reweighting data,
and other approaches could be used to combine quench + US data;
e.g., we tried combining US + quench data using EMUS,27 but this
was more computationally demanding and resulted in larger errors
due to numerics.

Furthermore, we proposed a solute tempering version of
quenching so that it can be applied to solution systems where there
are many DOF due to the presence of solvent molecules. We showed
that a perfect FES can also be obtained by combining this approach
with US. As with solute tempering, the major advantage of estimat-
ing the FES at other values of T is no longer applicable, and so it
remains to be tested whether this approach is more efficient than the
equilibrium approach of US combined with solute tempering for a
more difficult system.

Given our results, we feel that estimators based on nonequilib-
rium trajectories can offer an alternative approach worth consider-
ing. These approaches may prove to be well suited to certain classes
of problems that we have not yet tested, such as computing basin
volumes or phase equilibria of simple systems, and we plan to do so
going forward.

SUPPLEMENTARY MATERIAL

A supplementary document is available online as a single PDF
containing twelve additional figures referred to throughout the text,
as well as a derivation of our EMUS27 implementation.
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APPENDIX A: DERIVATION OF THE JACOBIAN J (t )
The Jacobian J(t) can be understood as a time-dependent

factor that describes how phase space volume changes over time
because of the non-equilibrium process. We can compute the change
in phase space volume analogous to how it is done for the deriva-
tion of Liouville’s theorem.36 First, let us consider an infinitesimal
phase space volume at time t, defined by d + 1 arbitrarily closely
spaced points X(t) = (X1, . . . , Xd),{X′i(t) = X(t) + δXi(t)}i=1,...,d

.
An infinitesimal phase space volume at time t is defined as follows:

δV(t) = det (δX1(t), . . . , δXd(t)), (A1)

where δXi(t) = X′i(t) −X(t).
After infinitesimal time δt,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Xi(t + δt) = Xi(t) + b(X(t)) δt + O(δt2
),

X′i(t + δt) = X′i(t) + b(X′i(t)) δt + O(δt2
)

= Xi(t) + δXi(t)

+ [b(X(t)) +∇b(X(t)) ⋅ δXi(t) + O(∣δXi∣
2
(t))]δt

+ O(δt2
),

δXi(t + δt) = X′i(t + δt) − Xi(t + δt)

≈ δXi(t) + [∇b(X(t)) ⋅ δXi(t)]δt + O(δt2
),

= (I + δt∇b(X(t))) ⋅ δXi(t) + O(δt2
),

I + δt∇b(X(t)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1 + δt
∂b1(X(t))

∂X1
. . . δt

∂b1(X(t))
∂Xd

⋮ ⋮

δt
∂bd(X(t))

∂X1
. . . 1 + δt

∂bd(X(t))
∂Xd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

,

δV(t + δt) = det (δX1(t + δt), . . . , δXd(t + δt))

≈ det ((I + δt∇b(X(t))) ⋅ (δX1(t), . . . , δXd(t)))

= det (I + δt∇b(X(t))) ⋅ det (δX1(t), . . . , δXd(t))

= (1 + δt∇ ⋅ b(X(t)) + O(δt2
))δV(t).

(A2)

The last equation gives at lowest order,

1
δV(t)

d
dt
δV(t) = ∇ ⋅ b(X(t)), (A3)

and by integrating this equation gives

δV(t) = δV(0) × exp(∫
t

0
∇ ⋅ b(X(s)) ds)

= δV(0) × J(t). (A4)

APPENDIX B: TIME EVOLUTION OF QUENCH
EQUATIONS OF MOTION

Since the functional form of quench is similar to Langevin
dynamics, we use the so-called BAOAB scheme18 to get an accurate
numerical update of coordinates and momenta. We split the quench
equation of motion into the following three parts:

● (B) is Ṗ(t) = −∇U(Q(t)),
● (A) is Q̇(t) =M−1P(t), and
● (O) is Ṗ(t) = −γP(t).

By iterating these parts in the order BAOA for discrete time
steps proportional to δt, time is advanced. We can solve the (O) step
analytically to advance time more accurately, while the other two
steps are advanced to first order in δt. This results in a scheme as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(B) : P← P −∇U(Q) ⋅ δt,

(A) : Q← Q +M−1P ⋅
δt
2

,

(O) : P← exp (−γδt)P,

(A) : Q← Q +M−1P ⋅
δt
2

.

This is implemented in a LAMMPS “fix”
quench_exponential, implemented by the code
“fix_quench_exponential.cpp” and “fix_quench_exponential.h”
available in the github repository for this paper.

APPENDIX C: NUMERICAL ERROR IN FREE ENERGY
CALCULATION

We compute free energy surfaces on a discrete grid, result-
ing in a discretization error. First, let us consider free energy along
1D CV s ∈ R, but this can be generalized to higher dimensional
CVs in a similar manner. We assume the true free energy F(s) is
differentiable,

F(s) = −
1
β

ln(∫R
2d δ(S(X) − s) exp (−βH(X)) dX
∫R2d exp (−βH(X)) dX

). (C1)

In practice, this delta function is replaced by a window
function, which is 1 within a range of s and zero outside.
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Suppose F̄(s0) is the average free energy, we should get at the
specific site s0 over an interval with length Δs,

F̄(s0)Δs = ∫
s0+Δs/2

s0−Δs/2
F(s) ds

= ∫

Δs/2

−Δs/2
F(s0 + s) ds

= ∫

Δs/2

−Δs/2
F(s0) + F′(s0)s +

1
2

F′′(s0)s2
+ O(s3

) ds

= F(s0)Δs +
1

24
F′′(s0)Δs3

+ O(Δs5
). (C2)

To apply this averaging idea, we can apply it to the probability
distribution rather than the free energy itself, resulting in

exp (−βF̃(s0))Δs = ∫
s0+Δs/2

s0−Δs/2
exp (−βF(s)) ds

= ∫

Δs/2

−Δs/2
exp (−βF(s0 + s)) ds

= ∫

Δs/2

−Δs/2
exp(−β[F(s0) + F′(s0)s

+
1
2

F′′(s0)s2
+ O(s3

)]) ds

≈ exp (−βF(s0))∫

Δs/2

−Δs/2
1 − βF′(s0)s

+
1
2
(β2F′2(s0) − βF′′(s0))s2

+ O(s3
) ds

= exp (−βF(s0))[Δs +
1

24
(β2F′2(s0)

− βF′′(s0))Δs3
+ O(Δs5

)]. (C3)

From Eqs. (C2) and (C3), we find that the true free energy, the
mean free energy over an interval, and the free energy computed
from the block functions are approximately equal within first order
accuracy, and the error has a magnitude of O(Δs2

).

APPENDIX D: DERIVATION OF WHAM EQUATIONS

WHAM37 (Weighted Histogram Analysis Method) is a widely
used technique to reweight data from different windows in umbrella
sampling simulations. However, WHAM is valid only for an equilib-
rium process, so here we derive a nonequilibrium version of WHAM
that applies in this case. We follow the derivation in Ref. 26 and
modify some parts to match the “quenching” case.

In the case of regular umbrella sampling simulations, let ρkl
○ be

the unbiased probability density at window (ϕk,ψl), which we wish
to determine. To compute this, we apply bias potentials ωij,kl at a
window (ϕk,ψl) with an additional harmonic potential centered at
site (ϕi,ψj) defined by

ωij,kl =
1
2
κ[(ϕi − ϕk)

2
+ (ψj − ψl)

2
]. (D1)

Note that because the bias is applied to dihedral angles, dihedral
differences are computed taking into account periodicity of 2π radi-
ans. Under the influence of this potential, we measure nij,kl the

“counts” (number of sampled data points) in the window centered
at (ϕk,ψl).

Since the ratio of probability densities between two windows
is fixed, the overall probability density ρij,kl at window (ϕk,ψl) with
biased potential at site (ϕi,ψj) is the linear combination of biased
probability densities,

ρij,kl = cijρkl
○ exp (−β0ωij,kl), (D2)

where cij is the normalization factor at t = 0,

c−1
i j =∑

k,l
ρkl
○ exp (−β0ωij,kl). (D3)

The overall probability of getting the sampled data is propor-
tional to the product of these biased probability densities,

P∝∏
i,j
∏

k,l
(ρij,kl)

nij,kl

=∏

i,j
∏

k,l
(cijρ○kl exp (−β0ωij,kl))

nij,kl. (D4)

We can estimate the true probability density by maximizing the
log-likelihood,

∂ ln P
∂ρkl
○ =∑

i,j
nij,kl

1
ρkl
○ +∑

i,j
∑

k,l
nij,kl

1
cij

∂cij

∂ρkl
○

=∑

i,j
nij,kl

1
ρkl
○ −∑

i,j

⎛

⎝
∑

k,l
nij,kl
⎞

⎠

cij exp (−β0ωij,kl)

= 0. (D5)

Summarizing this equation and normalization condition gives
WHAM equations for regular umbrella sampling simulations,

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

ρkl
○
=

∑I,j nij,kl

∑i,j (∑k,l nij,kl)cij exp (−β0ωij,kl)
,

c−1
i j =∑

k,l
ρkl
○ exp (−β0ωij,kl).

(D6)

Similarly, in quenching, let ρij,kl,t be the probability density at
window (ϕk,ψl) and at time t with biased potential centered at
(ϕiψj),

ρij,kl,t = cijρkl
○ exp (−β0ωij,kl) exp (−dγt), (D7)

where cij is the normalization factor,

c−1
i j =∑

k,l
ρkl
○ exp (−β0ωij,kl). (D8)

We eventually get exactly the same equation as Eq. (D6) except
for the expression of nij,kl,

nij,kl =∑
t

nij,kl,t. (D9)

Note that ρkl
○ is the unbiased probability density at starting tem-

perature β0. If we would like to estimate the unbiased probability ρkl
○
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TABLE I. Table of computational cost for generating data used in each example given in the main text.

System Figures Method Cost/start Starts Windows

Harmonic 1 and 2 Quench 10 + 2/γquench 2000 ⋅ ⋅ ⋅

Ala 3(a), 4(a), and 7 2dUS 1 ns 1 400
Ala 3(b) Quench 1 + 4γ−1

= 41 ps 104
⋅ ⋅ ⋅

Ala 4(b) Quench + 2dUS 3 ps 300 400
Ala 5(a) and 5(c) 2dUS 2 ns 1 400
Ala 5(b) Quench + 2dUS 3 ps 50 400
Ala 6(a) 1dUS 2 ns 1 20
Ala 6(b) Quench + 1dUS 3 ps 666 20

Ala 7

Quench + 2dUS
T0 = 300 3 ps 666 400
T0 = 75 4 ps 500 400

T0 = 1200 4 ps 500 400
Ala +H2O 8(a) 2dUS 2 ns 1 400
Ala +H2O 8(b) S-Quench + 2dUS 3 ps 333 400

at the target temperature β while the simulations are run at a dif-
ferent starting temperature β0, then there are two ways to compute
nij,kl.

In the first approach, we can estimate the density of states
n(ϕk,ψl, E) instead with the following relations:

exp (−βF(ϕk,ψl)) ≈∑
E

n(ϕk,ψl, E) exp (−βE)ΔE

≈∑

E
n(ϕk,ψl, E) exp (−βE)EΔ ln E. (D10)

Here, the conversion to use Δ ln(E) is shown because, in practice,
the exponential decay/increase in energy from quench dynam-
ics leads to a very wide range of energy values, and hence, it
is more computationally convenient to histogram the log of the
energy,

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

n(ϕk,ψl, E) =
∑i,j nij,kl,E

∑i,j (∑k,l,E nij,kl,E)cij exp (−β0(E + ωij,kl))
,

c−1
i j =∑

k,l,E
n(ϕk,ψl, E) exp (−β0(E + ωij,kl)).

(D11)

In the second, we compute “effective counts.” We use Eq. (16)
to estimate the biased probability ρij,kl, which is normalized counts
nij,kl up to a constant. We can feed these effective counts to the
WHAM equations [Eq. (D6)] to estimate ρij,kl.

Although the first way is mathematically more rigorous, the
second method is more convenient and cheaper to implement, and
hence, we did not use the first approach in this paper.

APPENDIX E: AMOUNT OF SIMULATION TIME USED
IN EACH EXAMPLE

The table of computational cost for generating data used in each
example given in the main text is given in this appendix Table I.
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