
Efficient Bayesian Sampling Using Normalizing Flows
to Assist Markov Chain Monte Carlo Methods
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Abstract
Normalizing flows can generate complex target
distributions and thus show promise in many ap-
plications in Bayesian statistics as an alternative
or complement to MCMC for sampling posteriors.
Since no data set from the target posterior distribu-
tion is available beforehand, the flow is typically
trained using the reverse Kullback-Leibler (KL)
divergence that only requires samples from a base
distribution. This strategy may perform poorly
when the posterior is complicated and hard to
sample with an untrained normalizing flow. Here
we explore a distinct training strategy, using the
direct KL divergence as loss, in which samples
from the posterior are generated by (i) assisting
a local MCMC algorithm on the posterior with a
normalizing flow to accelerate its mixing rate and
(ii) using the data generated this way to train the
flow. The method only requires a limited amount
of a priori input about the posterior, and can be
used to estimate the evidence required for model
validation, as we illustrate on examples.

1. Introduction
Given a model with continuous parameters θ ∈ Θ ⊆ Rd, a
prior on these parameters in the form of a probability density
function ρo(θ), and a set of observational data D giving the
likelihood L(θ) for the model parameter θ, Bayes formula
asserts that the posterior distribution of the parameters has
probability density

ρ∗(θ) = ρ(θ|D)ρo(θ) = Z−1
∗ L(θ)ρo(θ) (1)

where the normalization factor Z∗ =
∫

Θ
L(θ)ρo(θ)dθ is the

unknown evidence. A primary aim of Bayesian inference is
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to sample this posterior to identify which parameters best
explain the data given the model. In addition one is typi-
cally interested in estimating Z∗ since it allows for model
validation, comparison, and selection.

Markov Chain Monte Carlo (MCMC) algorithms (Liu,
2008) are nowadays the methods of choice to sample com-
plex posterior distributions. MCMC methods generate a
sequence of configurations over which the time average of
any suitable observable converges towards its ensemble av-
erage over some target distribution, here the posterior. This
is achieved by proposing new samples from a proposal den-
sity that is easy to sample, then accepting or rejecting them
using a criterion that guarantees that the transition kernel of
the chain is in detailed balance with respect to the posterior
density: a popular choice is Metropolis-Hastings criterion.

MCMC methods, however, suffer from two problems. First,
mixing may be slow when the posterior density ρ∗ is mul-
timodal, which can occur when the likelihood is non-log-
concave (Fong et al., 2019). This is because proposal dis-
tributions using local dynamics like the popular Metropolis
adjusted Langevin algorithm (MALA) (Roberts & Tweedie,
1996) are inefficient at making the chain transition from one
mode to another, whereas uninformed non-local proposal
distributions lead to high rejection rates. The second issue
with MCMC algorithms is that they provide no efficient way
to estimate the evidence Z∗: to this end, they need to be
combined with other techniques such as thermodynamic in-
tegration or replica exchange, or traded for other techniques
such as annealed importance sampling (Neal, 2001), nested
sampling (Skilling, 2006), or the descent/ascent nonequi-
librium estimator proposed in (Rotskoff & Vanden-Eijnden,
2019) and recently explored in (Thin et al., 2021).

Here, we employ a data-driven approach to aid designing a
fast-mixing transition kernel along the lines of mode-hoping
algorithms proposed by (Tjelmeland & Hegstad, 2001; An-
dricioaei et al., 2001; Sminchisescu & Welling, 2017) and
learning based algorithms of (Levy et al., 2018; Titsias,
2017; Song et al., 2017). Normalizing flows (Tabak &
Vanden-Eijnden, 2010; Tabak & Turner, 2013; Papamakar-
ios et al., 2021) are especially promising in this context:
these maps can approximate the posterior density ρ∗ as the
pushforward of a simple base density ρB (e.g. the prior
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density ρo) by an invertible map T : Θ→ Θ. Their use for
Bayesian inference, as opposed to density estimation (Song
et al., 2017; 2021), was first advocated in Rezende & Mo-
hamed (2015). Since a representative training set of samples
from the posterior density is typically unavailable before-
hand, these authors proposed to use the reverse Kullback-
Leibler (KL) divergence of the posterior ρ∗ from the push
forward of the base ρB, since this divergence can be ex-
pressed as an expectation over samples generated from ρB,
consistent with the variational inference framework (Jordan
et al., 1998; Blei et al., 2017). This procedure has the poten-
tial drawback that training the map is hard if the posterior
differs significantly from the initial pushforward (Hartnett &
Mohseni, 2020), as it may lead to “mode collapse.” Anneal-
ing of ρ∗ during training was shown to reduce this issue (Wu
et al., 2019; Nicoli et al., 2020).

Building on works using normalizing flows with MCMC
(Albergo et al., 2019; Noé et al., 2019; Gabrié et al., 2021)
here we explore an alternative strategy that blends sampling
and learning where we (i) assist a MCMC algorithm with
a normalizing flow to accelerate mixing and (ii) use the
generated data to train the flow on the direct KL divergence.

2. Posterior Sampling and Model Validation
with Normalizing Flows

A normalizing flow (NF) is an invertible map T that pushes
forward a simple base density ρB (typically a Gaussian
with unit variance, though we could also take ρB = ρo)
towards a target distribution, here the posterior density ρ∗.
An ideal map T∗ (with inverse T̄∗) is such that if θB is
drawn from ρB then T∗(θB) is a sample from ρ∗. Of course,
in practice, we have no access to this exact T∗, but if we
have an approximation T of T∗, it still assists sampling ρ∗.
Denote by ρ̂ the push-forward of ρB under the map T ,

ρ̂(θ) = ρB(T̄ (θ)) det
∣∣∇θT̄ ∣∣ . (2)

As long as ρ̂ and ρ∗ are either both positive or both zero at
any point θ ∈ Θ, we can use a Metropolis-Hasting MCMC
algorithm to sample from ρ∗ using ρ̂ as a transition ker-
nel: a proposed configuration θ′ = T (θB) from a given
configuration θ is accepted with probability

acc(θ, θ′) = min

[
1,
ρ̂(θ)ρ∗(θ

′)

ρ∗(θ)ρ̂(θ′)

]
. (3)

This procedure is equivalent to using the transition kernel

πT (θ, θ′) = acc(θ, θ′)ρ̂(θ′) +
(
1− r(θ)

)
δ(θ − θ′) (4)

where r(θ) =
∫

Θ
acc(θ, θ′)ρ̂(θ′)dθ′. Since πT (θ, θ′) is irre-

ducible and aperiodic under the aforementioned conditions
on ρ∗ and ρ̂, its associated chain is ergodic with respect

Algorithm 1 Concurrent MCMC sampling and map training
1: SAMPLETRAIN(U∗, T , {θi(0)}ni=1, τ , kmax, kLang, ε)
2: Inputs: U∗ target potential, T initial map, {θi(0)}ni=1

initial chains, τ > 0 time step, kmax ∈ N total duration,
kLang ∈ N number of Langevin steps per NF resampling
step, ε > 0 map training time step

3: k = 0
4: while k < kmax do
5: for i = 1, . . . , n do
6: if k mod kLang + 1 = 0 then
7: θ′B,i ∼ ρB

8: θ′i = T (θ′B,i) {push-forward via T}
9: θi(k + 1) = θ′i with prob acc(θi(k), θ′i), other-

wise θi(k + 1) = θi(k) {resampling step}
10: else
11: θ′i = θi(k)− τ∇U∗(θi(k)) +

√
2τ ηi with ηi ∼

N (0d, Id) {discretized Langevin step}
12: θi(k + 1) = θ′i with MALA acceptance prob or

ULA, otherwise θi(k + 1) = θi(k)
13: k ← k + 1
14: L[T ] = − 1

n

∑n
i=1 log ρ̂(θi(k + 1))

15: T ← T − ε∇L[T ] {Update the map}
16: return: {θi(k)}kmax,n

k=0,i=1, T

to ρ∗ (Meyn & Tweedie, 2012). In addition the evidence is
given by

Z∗ = EρB
[
L(T (θB))ρo(T (θB))

ρ̂(T (θB))

]
. (5)

For the scheme to be efficient, two conditions are required.
First the parametrization of the map T must allow for easy
evaluation of the density ρ̂ which requires easily estimable
Jacobian determinants and inverses. This issue has been
one of the main foci in the normalizing flow literature (Pa-
pamakarios et al., 2021) and is for instance solved using
coupling layers (Dinh et al., 2015; 2017). Second, as shown
by formula (3) the proposal density ρ̂ must produce samples
with statistical weights comparable to the posterior density
ρ∗ to ensure appreciable acceptance rates. This requires
training the map T to resemble the optimal T∗.

3. Compounding Local MCMCs and
Generative Sampling

In Algorithm 1, we present a concurrent sampling/training
strategy that synergistically uses T to improve sampling
from ρ∗ and samples obtained from ρ∗ to train T . Let us
describe the different components of the scheme.

Sampling. The sampling component of Algorithm 1 alter-
nates between steps of the Metropolis-Hasting procedure
using a NF as discussed in Section 2 and steps of a local
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Figure 1. Sampling a mixture of 2 Gaussians in 10d. Top row:
Training loss and acceptance rate of the NF non-local moves as a
function of iterations. Middle row: Target density and estimation
of the relative weight of modes A and B using sampling with ρ̂.
Bottom row: ρ̂ and example chains along training/sampling. (See
Appendix A.2 for setup details.)

MCMC sampler (here MALA) (line 11), using as potential

U∗(θ) = − logL(θ)− log ρo(θ). (6)

Strictly speaking, the second transition kernel does not need
to be local, it should, however, have satisfactory acceptance
rates early in the training procedure to provide initial data to
start up the optimization of T . From a random initialization
T , the parametrized density ρ̂ has initially little overlap with
the posterior ρ∗ and the moves proposed by the NF have
a high probability to be rejected. However, thanks to the
data generated by the local sampler, the training of T can
be initiated. As training goes on, more and more moves
proposed by the NF can be accepted. It is crucial to notice
that these moves, generated by pushing forward independent
draws from the base distribution ρB(θ), are non-local and
easily mix between modes.

Training. A standard way of training T is to minimize the
Kullback-Leibler divergence from ρ̂ to ρ∗. Since we do not
have access to samples from ρ∗, here we use instead

DKL(ρk‖ρ̂) = Ck −
∫

Θ

log ρ̂(θ)ρk(θ)dθ, (7)
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Figure 2. Radial velocities. From the signal plotted in blue, we
draw the noisy observations in red and obtain the initial samples
in gray with the Joker algorithm (Price-Whelan et al., 2017).

where ρk denotes the density of the MCMC after k ∈ N
steps andCk =

∫
Θ

log ρk(θ)ρk(θ)dθ is a constant irrelevant
for the optimization of T . In practice, we run n walkers in
parallel in the chain: denoting their positions at iteration k
by {θi(k)}ni=1, we use the following estimator of (7) (minus
the constant) as objective for training:

Lnk [T ] = − 1

n

n∑
i=1

log ρ̂(θi(k)). (8)

The training component of Algorithm 1 uses stochastic gra-
dient descent on this loss function to update the parameters
of the normalizing flow (line 15). Note that {θi(k)}ni=1 are
not perfect samples from ρ∗ to start with, but their quality
increases with the number of iterations of the MCMC. Note
also that this training strategy is different from the one pro-
posed in (Rezende & Mohamed, 2015), which uses instead
the reverse KL divergence of ρ̂ from ρ∗: this objective could
be combined with the one in (8). Here we will stick to us-
ing (8) as loss, using approximate input from ρ∗ through the
MCMC samples initialized as explained next. Müller et al.
(2019) used the same forward KL divergence for training
yet using a reweighing of samples from ρ̂ for its estimation,
which may be imprecise if the initial pushforward density
bears little overlap with the target ρ∗.

Initialization. To initialize MCMC chains, we assume that
we have initial data lying in each of the important modes of
the posterior ρ∗, but require no additional information. That
is, we take θi(0) = θi, where the θi are initially located in
these modes but not necessarily drawn from ρ∗. We stress
that the method therefore applies in situations where these
modes have been located beforehand, for example by doing
gradient descent on L(θ)ρo(θ) from random points in Θ.

Architecture details of Algorithm 1 are deferred to Ap-
pendix A, and questions of convergence to Appendix B.
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Figure 3. Comparing samples from Algorithm 1 (top row in blue, 2d projections) with the samples from Joker (in green) and the
initialization samples (in pink). The posterior densities marginalized over two parameters are shown in the bottom row.

4. Numerical Experiments
4.1. Sampling Mixture of Gaussians in High-dimension

As a first test case of Algorithm 1, we sample a Gaussian
mixture with 2 components in 10 dimensions and estimate
the relative statistical weights of its two modes.1 The bottom
row of Fig. 1 shows 2d projections of the trajectories of
representative chains (in black) from initializations in each
of the modes (red stars) as the NF learns to model the target
density (blue contours). Running first locally under the
Langevin sampler, the chains progressively mix between
modes and grasp the difference of statistical weights also
captured by the final map T . Quantitatively, the acceptance
rate of moves proposed by the NF reaches∼ 80% at the end
of training (Fig. 1 top row). The estimator of the relative
statistical weights of each modes (the right mode A is twice
as likely as the left mode B) using Eq. (5) also converges to
the exact value within a small statistical error (Fig. 1 middle
row).

4.2. Radial Velocity of an Exoplanet

Next we apply our method to the Bayesian sampling of ra-
dial velocity parameters in a model close to the one studied
by Price-Whelan et al. (2017) for a star-exoplanet sys-
tem. The model has 4 parameters: an offset velocity v0,
an amplitude K, a period P and a phase φ0. Introducing
θ = (v0,K, φ0, lnP ) ∈ Θ ⊂ R4, the radial velocity is

v(t; θ) = v0 +K cos(Ωt+ φ0) (9)

with Ω = 2π/P . From a set of observations D =
{vk, tk}Nk=1, the goal is to sample the posterior distribution

1In this experiment and the one that follows we used unadjusted
Langevin dynamics (ULA) rather than MALA because the time
steps were sufficiently small to ensure a high acceptance rate.

over θ. Following (Price-Whelan et al., 2017), we assume
a Gaussian likelihood L(θ) = N (vk; v(tk; θ), σ2

obs), with
known variance σ2

obs, and the prior distributions

lnP ∼ U(lnPmin, lnPmax), φ0 ∼ U(0, 2π),

K ∼ N (µK , σ
2
K), v0 ∼ N (0, σ2

v0).
(10)

We sample N = 6 noisy observations at different times tk
(red diamonds in Fig. 2) from a ground-truth radial velocity
with parameters θ0 (dashed blue line). Using one iteration of
the accept-reject Joker algorithm (Price-Whelan et al., 2017)
with 103 samples from the prior distributions we obtain 11
sets of likely parameters (corresponding to the gray lines in
Fig. 2), which we will use as starting points for the MCMC
chains in Algorithm 1. Note that to ensure a minimum
acceptance rate of ∼ 1% the Joker samples priors of P and
φ0 only, and computes the maximum likelihood value for
the “linear parameters” K and v0.

We assess the quality of sampling after 104 iterations of
Algorithm 1 on Fig. 3, looking at all the possible 2d projec-
tions of space of parameters. The samples from Algorithm
1 (top row, in blue, final acceptance rate of 60%, see Fig. 4)
are generally covering well the modes of the marginal poste-
rior distribution (second row), far beyond the initial samples
(top row, in pink), at the exception of a light mode in the
neighborhood of v0 = 0 and φ0 = 0 in which no chain was
initialized. This is an illustration of the need for prior knowl-
edge of the rough location of a basin of interest to successful
sample it with the proposed method. For comparison, we
also report samples accepted by the Joker algorithm from
an initial draw of 106 samples (top row, in green). Because
of the maximum likelihood step along K and v0 mentioned
above, the posterior is not appropriately sampled along these
two dimensions by this strategy.
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5. Conclusion
Our results show that normalizing flows can be exploited
to augment MCMC schemes used in Bayesian inference
with a nonlocal transport component that significantly en-
hances mixing. By design, the method blends MCMC with
an optimization component similar to that used in varia-
tional inference (Blei et al., 2017), and it would be interest-
ing to investigate further how both approaches compare on
challenging applications with complex posteriors on high
dimensional parameter spaces.
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A. Computational details
All codes are made available through the Github repository anonymous (to be disclosed after double-blind review).

A.1. Architectures

We parametrize the map T as a RealNVP (Dinh et al., 2017), for which inverse and Jacobian determinant can be computed
efficiently. Its building block is an invertible affine coupling layer updating half of the variables,

θ
(k+1)
1:d/2 = e

s
(
θ
(k)

d/2:d

)
� θ(k)

1:d/2 + t
(
θ

(k)
d/2:d

)
(11)

where s(·) and t(·) are learnable neural networks from Rd/2 → Rd/2, � denotes component-wise multiplication (Hadamard
product), and k indexes the depth of the network. In our experiments we use fully connected networks with depth 3, hidden
layers of width 100 with ReLU activations. The parameters of these networks are initialized with random Gaussian values
of small variance so that the RealNVP implements a map T close to the identity at initialization.

A.2. Mixture of Gaussians experiment

Target and hyperparameters. The target distribution is a mixture of Gaussian in dimension d = 10 with two components:

ρ∗(θ) = wA
e−

1
2 |θ−θA|

2

(2π)d/2
+ wB

e−
1
2 |θ−θB|

2

(2π)d/2
, (12)

with weights wA = 2/3, wB = 1/3 and centroids with non-zero coordinates only in the first two dimensions θA1,2 = (8, 3)
and θB1,2 = (−2, 3). Fig. 1 displays density slices in the (θ1, θ2)-plane.

We use a RealNVP network with 6 pairs of coupling layers and a standard normal distribution as a base ρB. A set of 100
independent walkers were initialized in equal shares in modes A and B of the target. For the optimization, we compute
gradients using batches of 1000 samples corresponding to 10 consecutive repeated sampling steps of Algorithm 1 (with
τ = 0.005 and kLang = 1). We run 4000 parameters updates using Adam with a learning rate of 0.005.

Computing log-evidence differences. Interpreting ρ∗(θ) as a posterior distribution over a set of parameters Θ, we would
like to estimate the relative evidence for modesA andB. Denoting byA andB two sets of configurations in Θ corresponding
to each mode, the difference between their log-evidence is given by

logZA − logZB = log

∫
Θ
1A(θ)ρ∗(θ)dθ∫

Θ
1B(θ)ρ∗(θ)dθ

= logE∗(1A)− logE∗(1B). (13)

Once the normalizing flow has been learned to assist sampling, it can be used to approximate Eq. 5. Drawing {θi}ni=1 from
ρ̂ we have the Monte Carlo estimate Ẑ∗,A of E∗(1A):

Ẑ∗,A =
1

Z ∗

n∑
i=1

1A(θi)ŵ(θi), (14)

with the unnormalized weights ŵi = L(θi)ρo(θi)/ρ̂(θi), taking the form of an importance sampling estimator. The quality
of the estimator can be monitored using an estimate of the effective sample size to adjust the variance estimate from the
empirical variance

neff =
(
∑n
i=1 ŵi)

2∑n
i=1 ŵ

2
i

. (15)

Finally the unknown Z∗ cancels out in the log-evidence difference:

logZA − logZB ≈ log

(
n∑
i=1

1A(θi)ŵi

)
− log

(
n∑
i=1

1B(θi)ŵi

)
. (16)

In the middle right panel of Fig. 1 we report the performance of this estimator using the sets A = {θ : ‖θ − θA‖2 ≤ 5}
and B = {θ : ‖θ − θB‖2 ≤ 5}, and n = 105. The estimator convergence to the exact value ln 2/3− ln 1/3 = ln 2 as the
quality of ρ̂ increases over training.
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Figure 4. Training of a NF to model the posterior distribution for the radial velocity experiment. Left: Evolution of the approximate
KL divergence used as an objective for training. Middle: The acceptance rate of the non-local moves proposed by the NF along training
are above 60% by the end of training. Right: The contour blue plot reports the marginalized true posterior along lnP and φ0 computed
with numerical integration. The colored lines mark the trajectories of MCMC chains using the assisted sampling startegy considered here
with the final learned map T .

A.3. Radial velocity experiment

Setup. The parameters of the prior are set to the values lnPmin = 3, lnPmax = 5, σobs = 1.8, σK = 3, µK = 5 and
σv0 = 1. The RealNVP used to learn the posterior distribution has 6 pairs of coupling layers. The base distribution ρB

is a standard normal distribution as in the previous experiment, but the NF is learned on a whitened representation of the
parameters θ. Concretely, using the 11 initial samples from the Joker, we compute the empirical mean θ̂ and empirical
covariance Σ̂ =

∑n
i=1(θi − θ̂)(θi − θ̂)>/n. The latter admits an eigenvalue decomposition Σ̂ = ODO>, with D the

diagonal matrix of eigenvalues and O the orthogonal eigenvectors basis. Using W = OD−1/2O>, we train the normalize
flow to model the distribution of the whitened parameters θW = W (θ − θ̂).

Training. A set of 110 independent walkers were initialized using 10 copies of each of 11 set of parameters retained
from an initial iteration of the Joker algorithm from 103 draws of φ0 and lnP . Here again we use 5 consecutive repeated
sampling steps of Algorithm 1 (with τ = 5e−6 and kLang = 1) to compute gradients using batches of 550 samples. We run
Adam for 104 iterations with a learning rate of 0.001.

Fig. 4 reports the evolution of the approximate KL divergence Lnk along training (left) and the acceptance rates of the
non-local moves proposed by the NF (middle). We also plot the projected trajectories of 11 chains started with the initial
Joker samples updated with combined sampling component of Algorithm 1 using the final learned T . During the short
chains that included 10 non-local resampling steps, the walkers can be seen to jump back and forth between two of the
modes of the marginalized density (underlying in blue in the plot). However mixing is not well assisted with the mode
around φ0 (see discussion in the main text as well).

B. Continuous limit of the MCMC scheme
B.1. Chapman-Kolmogorov equation

Written in terms of the densities ρ∗ and ρ̂ (assumed to be fixed for now) the transition kernel in (4) reads

πT (θ, θ′) = a(θ, θ′)ρ̂(θ′) + (1− b(θ))δ(θ − θ′) (17)
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where

a(θ, θ′) = min

(
ρ̂(θ)ρ∗(θ

′)

ρ̂(θ′)ρ∗(θ)
, 1

)
,

b(θ) =

∫
Θ

a(θ, θ′)ρ̂(θ′)dθ′.

(18)

Denoting as {ρk(θ)}k∈N the updated probability density of the walker in the Markov chain associated with the kernel
πT (θ, θ′) alone, this density satisfies the Chapman-Kolmogorov equation

ρk+1(θ) =

∫
Θ

ρk(θ′)πT (θ′, θ)dθ′. (19)

Using the explicit form of πT (θ, θ′) in (17), after some simple reorganization this equation can be written as

ρk+1(θ) = ρk(θ) +

∫
Θ

R(θ, θ′) (ρ∗(θ)ρk(θ′)− ρk(θ)ρ∗(θ
′)) dθ′ (20)

where we defined

R(θ, θ′) = R(θ′, θ) = min

(
ρ̂(θ)

ρ∗(θ)
,
ρ̂(θ)

ρ∗(θ)

)
. (21)

Note that if we had ρ̂ = ρ∗, then R(θ, θ′) = 1 and (20) would reach equilibrium in one step, ρk+1 = ρ∗ whatever ρk.

B.2. Continuous limit

To take the continuous limit of (20), we modify this equation in a way that the update of the density is only partial.
Specifically, denoting ρt the value of the density at time t ≥ 0, we turn this equation into

ρt+τ (θ) = ρt(θ) + ατ

∫
Θ

R(θ, θ′) (ρ∗(θ)ρt(θ
′)− ρt(θ)ρ∗(θ′)) dθ′ (22)

where α > 0 and τ > 0 are parameters. This will allow us to make the MCMC resampling updates on par with those of
MALA, using τ > 0 as timestep in both. Subtracting ρt(θ) from both sides of (22), dividing by τ , and letting τ → 0 gives

∂tρt(θ) = α

∫
Θ

R(θ, θ′) (ρ∗(θ)ρt(θ
′)− ρt(θ)ρ∗(θ′)) dθ′. (23)

We can now add the Langevin terms that arise in the continuous limit of the compounded MCMC scheme that we use, to
arrive at

∂tρt = ∇ · (ρt∇U∗ +∇ρt) + α

∫
Θ

R(θ, θ′) (ρ∗(θ)ρt(θ
′)− ρt(θ)ρ∗(θ′)) dθ′ (24)

where α > 0 measures the separation of time scale between the Langevin and the resampling terms. Written in term of
gt = ρt/ρ∗ and ĝt = ρ̂t/ρ∗ (now also allowed to vary with time) Eq. (24) reads

∂tgt = −∇U∗ · ∇gt + ∆gt + α

∫
Θ

min(ĝt(θ), ĝt(θ
′)) (gt(θ

′)− gt(θ)) ρ∗(θ′)dθ′ (25)

B.3. Convergence rate

Consider the Pearson χ2-divergence of ρt with respect to ρ∗ defined

Dt =

∫
Θ

ρ2
t

ρ∗
dθ − 1 =

∫
Θ

g2
t ρ∗dθ − 1 ≥ 0. (26)

Assuming that D0 <∞ and using (25) we deduce that Dt satisfies

dDt

dt
= 2

∫
Θ

gt(θ)∂tgt(θ)ρ∗(θ)dθ

= 2

∫
Θ

gt(θ)∇ · (ρ∗(θ)∇gt(θ))dθ + 2α

∫
Θ2

min(ĝt(θ), ĝt(θ
′)) (gt(θ

′)− gt(θ)) gt(θ)ρ∗(θ)ρ∗(θ′)dθdθ′

= −2

∫
Θ

|∇gt(θ)|2ρ∗(θ)dθ − α
∫

Θ2

min(ĝt(θ), ĝt(θ
′)) |gt(θ′)− gt(θ)|2 ρ∗(θ)ρ∗(θ′)dθdθ′

≤ −α
∫

Θ2

min(ĝt(θ), ĝt(θ
′)) |gt(θ′)− gt(θ)|2 ρ∗(θ)ρ∗(θ′)dθdθ′

(27)
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where we used (−∇U∗ · ∇gt + ∆gt)ρ∗ = ∇ · (ρ∗∇gt) to reexpress the first integral in the second equality. If we denote
Ĝt = infθ∈Θ ĝt(θ) ∈ [0, 1], (27) implies

dDt

dt
≤ −αĜt

∫
Θ2

|gt(θ′)− gt(θ)|2 ρ∗(θ)ρ∗(θ′)dθdθ′ = −2αĜtDt, (28)

where we used the normalization conditions
∫

Θ
gt(θ)ρ∗(θ)dθ =

∫
Θ
ρ̂(θ)dθ = 1. As a result, using Gronwall inequality we

deduce
Dt ≤ D0e

−α
∫ t
0
Ĝsds. (29)

This equation indicates that Dt → 0 as t→∞ as long as
∫ t

0
Ĝsds→∞. That is, convergence can only fail if Ĝt = o(t−1)

as t→∞, and it is guaranteed otherwise. Convergence is also exponential asymptotically, as long as Ĝt remains bounded
away from 0 as t→∞.

To get a more explicit convergence rate, let us analyze (29) in two subcases. First let us assume that the map is not trained,
i.e. ĝt(θ) = ĝ(θ) is fixed, and denote Ĝ = infθ∈Θ ĝ(θ) ∈ [0, 1]. In this case, (29) reduces to

Dt ≤ D0e
−2αĜt (ĝt = ĝ fixed). (30)

Note that this bound is only nontrivial if Ĝ > 0. Even if that is the case, the rate in (30) can be pretty poor if Ĝ is very small
(e.g exponentially small in the input dimension d), which is to be expected if the map is not trained. The best case scenario
is of course the idealized situation when Ĝ = 1, which requires that ĝ = 1 (i.e. ρ̂ = ρ∗) because of the normalization
conditions

∫
Θ
ĝ(θ)ρ∗(θ)dθ =

∫
Θ
ρ̂(θ)dθ = 1: this case is the continuous equivalent of the one step convergence of the

discrete MCMC scheme with resampling from ρ∗.

Second let us assume that ĝt = gt, that is the trained distribution instantaneously follows the walkers distribution at all times.
In this case, (29) reduces to

Dt ≤ D0e
−2α

∫ t
0
Gsds (ĝ = gt), (31)

where we denote

Gt = inf
θ∈Θ

(
ρt(θ)

ρ∗(θ)

)
= inf
θ∈Θ

gt(θ) ∈ [0, 1]. (32)

To make this bound explicit, let us consider the evolution of Gt. Denoting θt = argminθ∈Θ gt(θ) so that Gt = gt(θt), and
using min(gt(θt), gt(θ

′)) = gt(θt) = Gt, ∇gt(θt) = 0, and ∆gt(θt) ≥ 0 by definition of θt, from (25) we have

dGt
dt

= ∂tgt(θt) + θ̇t · ∇gt(θt)

= ∆gt(θt) + αGt

∫
Θ

(gt(θ
′)−Gt) ρ∗(θ′)dθ′

= ∆gt(θt) + αGt − αG2
t

≥ αGt − αG2
t

(33)

where we used again the normalization conditions
∫

Θ
gt(θ

′)ρ∗(θ
′)dθ′ =

∫
Θ
ρ∗(θ

′)dθ′ = 1. Eq. (33) implies that

1

Gt −G2
t

dGt
dt
≥ α (34)

which after integration gives

log

(
Gt(1−G0)

G0(1−Gt)

)
≥ αt (35)

This means that we have
Gt ≥

G0

G0 + (1−G0)e−αt
. (36)

Inserting this equation in (31) and performing the integral explicitly gives

Dt ≤
D0

(G0(eαt − 1) + 1)
2 . (37)

This bound is only nontrivial if G0 ∈ (0, 1].
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