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Abstract

Finding Nash equilibria in two-player zero-sum continuous games is a central problem in machine
learning, e.g. for training both GANs and robust models. The existence of pure Nash equilibria requires
strong conditions which are not typically met in practice. Mixed Nash equilibria exist in greater generality
and may be found using mirror descent. Yet this approach does not scale to high dimensions. To address
this limitation, we parametrize mixed strategies as mixtures of particles, whose positions and weights
are updated using gradient descent-ascent. We study this dynamics as an interacting gradient flow over
measure spaces endowed with the Wasserstein-Fisher-Rao metric. We establish global convergence to
an approximate equilibrium for the related Langevin gradient-ascent dynamic. We prove a law of large
numbers that relates particle dynamics to mean-field dynamics. Our method identifies mixed equilibria in
high dimensions and is demonstrably effective for training mixtures of GANs.

1 Introduction
Multi-objective optimization problems arise in many fields, from economics to civil engineering. Tasks that
require to minimize multiple objectives have also become a routine part of many agent-based machine learning
algorithms including generative adversarial networks [Goodfellow et al., 2014], imaginative agents [Racanière
et al., 2017], hierarchical reinforcement learning [Wayne and Abbott, 2014] and multi-agent reinforcement
learning [Bu et al., 2008]. It remains difficult to carry out the necessary optimization, but also to assess the
optimality of a given solution.
Game theory provides a lens through which to view multi-agent optimization problems. The most classic
formulation involves finding a Nash equilibrium, i.e. a set of agent parameters for which no agent can
unilaterally improve its objective. Pure Nash equilibria, in which each agent adopts a single strategy, provided
a limited notion of optimality because they exist only under restrictive conditions. On the other hand, mixed
Nash equilibria (MNE), where agents adopt a strategy from a probability distribution over the set of all
strategies, exist in much greater generality [Glicksberg, 1952]. Importantly, MNE exist for games in which
each player has a continuous loss function, the setting appropriate for optimization problems encountered in
machine learning, like GANs [Goodfellow et al., 2014].
Existence does not guarantee efficient schemes for identifying MNE. Indeed, worst-case complexity analyses
have shown that, in general, there is no efficient algorithm for finding a MNE, even in the case of two-player
games [Daskalakis et al., 2009]. Recent work have had empirical success for GAN training—Hsieh et al. [2019]
report a mirror-prox algorithm that provides convergence guarantees but does not scale to high-dimensional
settings.
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Contributions. Similar to their approach, we formulate continuous two-player zero-sum games as a multi-
agent optimization problem over the space of probability measures on strategies. This “mean-field” approach
to the problem allows us to prove convergence towards a MNE for two fundamentally different algorithms.

• We propose a converging algorithm for the mixed-Nash problem with an entropic regularization, which
makes it convex at the cost of introducing a bias.

• We propose a converging optimization dynamics for solving the MNE based upon a gradient flow over
the space of measures endowed with a Wasserstein-Fisher-Rao metric [WFR, Chizat et al., 2018].

• We demonstrate numerically that both approaches outperform mirror-descent in high-dimensions. We
then show that mixtures of GANs can be trained using the proposed WFR algorithm and discover data
clusters.

2 Related work
Equilibria in Continuous Games: While many algorithms and methods have been proposed to identify
MNE [Mertikopoulos et al., 2019, Lin et al., 2018, Nouiehed et al., 2019], to our knowledge very few have
focused on the setting of non-convex non-concave games with a continuous strategy space. Many of the
relevant studies have dealt with training GANs using gradient descent/ascent (GDA): Heusel et al. [2017]
demonstrated that under certain strong conditions local Nash equilibria are stable fixed points of GDA in
GANs training; Adolphs et al. [2018] and Mazumdar et al. [2019] propose Hessian-based algorithms whose
stable fixed points are exactly local Nash equilibria; Jin et al. [2019] define the notion of local minimax and
show that these points are almost all equal to the stable limit points of GDA. Hsieh et al. [2019] studied
mirror-descent and mirror-prox on measures, providing convergence guarantees for GAN training. In the
context of games, Balduzzi et al. [2018] develop a symplectic gradient adjustment (SGA) algorithm for finding
stable fixed points in potential games and Hamiltonian games. These works contrast with our point of view,
aimed at guaranteeing convergence of the dynamics to an approximate MNE.

Equilibria in GANs: Arora et al. [2017] proved the existence of approximate MNE and studied the
generalization properties of this approximate solution; their analysis, however, does not provide a constructive
method to identify such a solution. In a more explicit setting, Grnarova et al. [2017] designed an online-learning
algorithm for finding a MNE in GANs under the assumption that the discriminator is a single hidden layer
neural network. Our framework holds without making any assumption on the architectures of the discriminator
and generator and provides explicit algorithms with convergence guarantees.

Mean-Field View of Nonlinear Gradient Descent: Our approach is closely related to the mean-field
perspective on wide neural networks [Mei et al., 2018, Rotskoff and Vanden-Eijnden, 2018, Chizat and Bach,
2018, Sirignano and Spiliopoulos, 2019, Rotskoff et al., 2019]. These methods consider training algorithms
as Wasserstein gradient flows, in which the parameters are represented by continuous measures over the
parameter space. In our setting, a mixed strategy corresponds to a measure over the space of strategies. In
fact, several authors have adopted this infinite-dimensional two-player game perspective for finding MNE.
Balandat et al. [2016] apply the dual averaging algorithm to the minimax problem and show that it recovers a
mixed-NE. However, they do not provide any convergence rate nor a practical algorithm for learning mixed
NE. In a similar spirit to our present work, the work from Hsieh et al. [2019] provides a formulation of the
optimization problem that closely resembles our presentation. They employ the framework of Nemirovski
[2004] to derive convergence rates to an approximate mixed-NE. Contrary to our work, their theoretical
approach does not employ a gradient-based dynamics. Their two-time scale algorithm uses Langevin dynamics
to perform each mirror step, but the implementation does not directly benefit from their theoretical guarantees.
Empirically, as shown below, we find that our dynamics has a more favorable scaling with dimensionality
than mirror-descent.
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3 Problem setup and mean-field dynamics
We review the framework of two-player zero-sum games and present two mean-field dynamics to find a
mixed-NE in such games.

Notations. For a topological space X we denote by P(X ) the space of Borel probability measures on X , and
M+(X ) the space of Borel (positive) measures. For a given measure µ ∈ P(X ) that is absolutely continuous
with respect to the canonical Borel measure dx of X and has Radon-Nikodym derivative dµ

dx ∈ C(X ), we define
its differential entropy H(µ) = −

∫
log(dµdx )dµ. For measures µ, ν ∈ P(X ), W2 is the 2-Wasserstein distance.

3.1 Two-player zero-sum games
In a two-player zero-sum game, each player’s gain is exactly balanced by the loss of the other player.

Definition 1. A two-player zero-sum game consists of a set of two players with parameters z = (x, y) ∈
Z = X × Y, and the players are endowed with loss functions `1 : Z → R and `2 : Z → R that satisfy for all
(x, y) ∈ Z, `1(x, y) + `2(x, y) = 0. In what follows, we define the loss of the game ` , `1 = −`2.
For example, generative adversarial network (GAN) training is a two-player zero-sum game between a generator
and discriminator. We make the following mild assumption over the geometry of the losses and constraints to
ensure existence of MNE [Glicksberg, 1952].

Assumption 1. The parameter spaces X and Y are compact Riemannian manifolds without boundary of
dimensions dx, dy embedded in RDx ,RDy respectively. Moreover, the loss ` is continuously differentiable and
L-Lipschitz with respect to its parameter. That is, for all x, x′ ∈ X and y, y′ ∈ Y, ‖∇x`(x, y)−∇x`(x′, y′)‖2 6
L(d(x, x′) + d(y, y′)).

Here, by slight abuse of notation d denotes the distance function in both X and Y. We use the Euclidean
metric in what follows for the sake of clarity; §I.5 provides an overview of the derivations on an arbitrary
manifold. These assumptions do not place any stringent criteria on the convexity and concavity of the loss,
unlike the setting for many classical results [Nikaidô and Isoda, 1955].

Nash equilibria. Joint minimizers of the losses `1 and `2 define the set of pure Nash equilibria [Nash,
1951] of the game. In the context of two-player zero-sum games, we look for equilibria (x∗, y∗) ∈ Z such that
∀x ∈ X , `(x∗, y∗) 6 `(x, y∗) and ∀y ∈ Y, `(x∗, y∗) > `(x∗, y). Such points do not always exist in continuous
games. In contrast, mixed Nash equilibria are guaranteed to exist [Glicksberg, 1952] under our assumptions,.
A mixed Nash equilibrium (MNE) is a pair (µ∗x, µ

∗
y) ∈ P(X ) × P(Y) that satisfies for all µx ∈ P(X ) and

µy ∈ P(Y), ∫∫
`(x, y)dµ∗x(x)dµ∗y(y) 6

∫∫
`(x, y)dµx(x)dµ∗y(y)∫∫

`(x, y)dµ∗x(x)dµ∗y(y) >
∫∫

`(x, y)dµ∗x(x)dµy(y).

Notice that finding the MNE of `(x, y) is equivalent to finding the pure Nash equilibria in the space of measures
for the two-player zero-sum game given by the loss

L(µx, µy) :=

∫∫
`(x, y)dµx(x)dµy(y). (1)

Our goal is to find an ε-mixed Nash equilibrium (ε-MNE) (µεx, µ
ε
y) of the game given by L(µx, µy). Such a

point satisfies the following condition: ∀µx ∈ P(X ), L(µεx, µ
ε
y) 6 L(µx, µ

ε
y) + ε and ∀µy ∈ P(Y), L(µεx, µ

ε
y) >

L(µεx, µy)− ε. We quantify the accuracy of a solution (µx, µy) using the Nikaidô and Isoda [1955] error:

NI(µx, µy) = sup
µ∗y∈P(Y)

L(µx, µ
∗
y)− inf

µ∗x∈P(X )
L(µ∗x, µy) . (2)

This error quantifies the gain that each player can obtain when deviating alone from the current strategy (see
§I.1 for more details). Finding a point at which NI(µx, µy) 6 ε is equivalent to identifying an ε-MNE. We
track the evolution of this metric in our theoretical results (§3.4) and in our experiments, where we the NI
error is estimated (§5).
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3.2 Dynamics
Suppose each player adjusts a mixture of n strategies by manipulating the positions x1, . . . xn (resp. y1 . . . yn)
with gradient descent (resp. ascent). This gradient descent-ascent algorithm is a discrete-time approximation
of the dynamics defined by the following ordinary differential equations: xi(0), yi(0) ∼ µ0

x, µ
0
y and

dxi
dt

= − 1

n

n∑
j=1

∇x`(xi, yj),
dyi
dt

=
1

n

n∑
j=1

∇x`(xj , yi). (3)

The dynamics at the level of the xi and yi induces a dynamics on the associated probability measures
µx = 1

n

∑n
i=1 δxi and µy = 1

n

∑n
i=1 δyi , corresponding to an Interacting Wasserstein Gradient Flow (IWGF):{
∂tµx = ∇ · (µx∇xVx(µy, x)), µx(0) = µx,0,

∂tµy = −∇ · (µy∇yVy(µx, y)), µy(0) = µy,0.
(4)

We have defined the first variations of the functional L(µx, µy) with respect to µx and with respect to µy as

Vx(µy, x) :=
δL
δµx

(µx, µy)(x) =

∫
`(x, y)dµy(y),

Vy(µx, y) :=
δL
δµy

(µx, µy)(y) =

∫
`(x, y)dµx(x).

Holding µy fixed, the evolution of µx is a Wasserstein gradient flow on L(·, µy) [Santambrogio, 2017]—hence
the IWGF name. Going from (3) to (4) is a classic lifting. The potentials Vx and Vy are mean-field potentials
in the sense that a ‘particle’ located at strategy x interacts with the mean of the strategies y via µy. We
interpret these PDEs in the weak sense; that is, equality holds when the measures are integrated against
bounded continuous functions. Intuitively, the IWGF describes how the collective distribution of particles
in X and Y evolve when each particle is updated via GDA. This dynamics, however, is not robust, even in
very simple nonconvex-nonconcave games—an example is provided in §I.2 in which the particle distributions
collapse in local optima which are not MNE.

Entropy-regularized dynamics. Entropic regularization provides one possible remedy to this issue. From
the mean-field viewpoint, this corresponds to adding a strongly convex (resp.) concave entropy term to the
loss functional L(µx, µy):

Lβ(µx, µy) := L(µx, µy)− β−1H(µx) + β−1H(µy), (5)

where we refer to β > 0 as the inverse temperature. The resulting Entropy-Regularized Interacting Wasserstein
Gradient Flow (ERIWGF): {

∂tµx = ∇x · (µx∇xVx(µy, x)) + β−1∆xµx,

∂tµy = −∇y · (µy∇yVy(µx, y)) + β−1∆yµy,
(6)

is a pair of coupled nonlinear Fokker-Planck equations. Such equations are the Kolmogorov forward equations
for the stochastic differential equations known as Langevin dynamics. A discretization of the Langevin SDEs
is used to derive (Alg. 1), which we call Langevin Descent-Ascent.

Wasserstein-Fisher-Rao gradient flow. A second approach to solve the shortcomings of (4) is to add
an unbalanced component to the transport, following Chizat [2019], Rotskoff et al. [2019], Liero et al. [2018]
in the context of optimization. In unbalanced transport, we consider a measure ν ∈ P(X ) as the projection of
a “lifted" measure µ ∈ P(X × R+) satisfying

∫
X×R+ w dµ(x,w) = 1, such that

ν =

∫
R+

w dµ(·, w). (7)
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The natural metric on the lifted space X × R+ induces a metric in the underlying probability space P(X )
known as the Wasserstein-Fisher-Rao or Hellinger-Kantorovich metric [Chizat et al., 2015, Kondratyev et al.,
2016]; it allows mass to ‘tele-transport’ from bad strategies to better ones with finite cost by moving along
the weight coorindate. This lifting can be interpreted at the level of particles as assigning to each particle a
dynamically evolving weight and νx and νy are the marginals over that weight; alternatively one can also
implement such lifting using birth-death processes [Rotskoff et al., 2019]. See App. A for details on the lifted
dynamics. The corresponding mean-field PDEs defines an Interacting Wasserstein-Fisher-Rao Gradient Flow
(IWFRGF): {

∂tνx = γx∇x · (νx∇xVx(νy, x))− ανx(Vx(νy, x)− L(νx, νy)), νx(0) = νx,0,

∂tνy = −γy∇y · (νy∇yVy(νx, y)) + ανy(Vy(νx, y)− L(νx, νy)), νy(0) = νy,0.
(8)

As before, if we take νy to be fixed, the first equation would be the gradient flow of L(·, νy) in the Wasserstein-
Fisher-Rao metric [Chizat et al., 2018]. When α = 0 we recover the IWGF (4). Without the gradient-based
transport term, i.e. when γ = 0, we obtain the continuous-time limit of entropic mirror descent on measures,
the algorithm studied by Hsieh et al. [2019].
The advantage of describing the dynamics using mean-field PDEs becomes apparent in §3.4, where we study
convergence properties of the dynamics (8). Of course, directly integrating any of the PDEs described here
would not be tractable in high dimension—they serve primarily as an analytical tool. Importantly, the
dynamics (8) admit a consistent particle limit, whose time discretization results in an efficient algorithm,
which we call Wasserstein-Fisher-Rao Descent-Ascent, and analyse in §4.

3.3 Analysis of the entropy-regularized Wasserstein dynamics
Under entropic regularization, the fixed points of two-player zero sum games satisfying Asm. 1 are unique. We
first state a theorem that characterizes the fixed points for the dynamics defined in (6). Secondly, we show
that the fixed point corresponds to an ε-MNE for sufficiently low value of the temperature 1/β, which controls
the strength of regularization. Finally, we provide an asymptotic guarantee of convergence to the fixed point.

Theorem 1. Assume X ,Y are compact Polish metric spaces equipped with canonical Borel measures, and
that ` is a continuous function on X × Y. Let us consider the fixed point problem{

ρx(x) = 1
Zx
e−β

∫
`(x,y) dµy(y),

ρy(y) = 1
Zy
eβ

∫
`(x,y) dµx(x),

(9)

where Zx and Zy are normalization constants and ρx, ρy are the densities of µx, µy. Problem (9) has a unique
solution (µ̂x, µ̂y) that is also the unique Nash equilibrium of the game given by Lβ (equation (5)).

The proof of existence is based on the Kakutani-Glicksberg-Fan theorem [Glicksberg, 1952]. See App. C for
the proof. In fact, the fixed points are also ε-MNE of the continuous game:

Theorem 2. Let K` := maxx,y `(x, y)−minx,y `(x, y) be the length of the range of `. Let ε > 0, δ := ε/(2Lip(`))
and Vδ be a lower bound on the volume of a ball of radius δ in X ,Y. Then the solution (µ̂x, µ̂y) of (9) is an
ε-Nash equilibrium of the game given by L when

β >
4

ε
log

(
2

1− Vδ
Vδ

(2K`/ε− 1)

)
.

In short, Theorem 2 states that by choosing a temperature 1/β low enough, the unique solution of (9) is
an ε-Nash equilibrium of L for ε > 0 arbitrarily small. Observe that the lower bound on β is linear in the
dimensions of the manifolds and on ε−1, up to log factors. See App. D for the proof.
The Fokker-Planck equations in (6) are well-posed when the drift (obtained as the gradient of the measure-
dependent potential) is sufficiently integrable. In general, the Aronson-Serrin conditions [Aronson and Serrin,
1967] provide conditions under which the PDEs that we consider have regular solutions and uniqueness can
be ensured.
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Theorem 3 (informal). Suppose that Asm. 1 holds, ` ∈ C2(X × Y) and ∇Vx and ∇Vy are sufficiently
integrable (cf. Aronson and Serrin [1967]). Under these assumptions, the stationary solution of the ERIWGF
(6) exists, is unique and is the solution of the fixed point problem (9).

Theorem 3 characterizes the stationary points of the ERIWGF but does not provide a guarantee of convergence
in time. In conjunction with Theorems 1 and 2, it implies that if the dynamics (6) converges in time, the
limit will be an ε-Nash equilibrium of L. The dynamics (6) correspond to a McKean-Vlasov process on the
joint probability measure (µx, µy). While convergence to stationary solutions of such processes have been
studied in the Euclidean case [Eberle et al., 2019], they only guarantee convergence for temperatures β−1 & L
in our setup, which is not strong enough to certify convergence to arbitrary ε-NE. Extending such global
convergence properties to arbitrary temperatures is an important direction for future research.
There is a trade-off between setting a low temperature β−1, which yields an ε-Nash equilibrium with small
ε but possibly slow convergence, and setting a high temperature, which has the opposite effect. Linear
potential Fokker-Planck equations indeed converge exponentially with rate e−λβt for all β, with λβ decreasing
exponentially on β for nonconvex potentials [Markowich and Villani, 1999, sec. 5]. See App. E for the proof
of Theorem 3.

3.4 Analysis of the Wasserstein-Fisher-Rao dynamics
Adding an entropic regularization term ensures convergence to a pair of stationary equilibrium distributions
that we can characterize explicitly. However, we pay for these favorable properties with an error controlled by
the degree of regularization. Due to the entropy, these equilibria will always have full support on X and Y,
even if the target MNE were sparse. These observations raise the question of whether or not it is possible to
guarantee that we can find Nash equilibria that are not biased towards full support in the noise-free setting.
Theorem 4 provides a partial answer: it states that, given a solution (νx, νy) of (8), the time averaged measures
at a time t0 are an ε-MNE, where ε can be made arbitrarily small by adjusting the constants γ, α of the
dynamics. The proof (App. F) builds on the convergence properties of continuous-time mirror descent and
closely follows the proof of Theorem 3.8 from Chizat [2019].

Theorem 4. Let ε > 0 arbitrary. Suppose that νx,0, νy,0 are such that their Radon-Nikodym derivatives with
respect to the Borel measures of X ,Y are lower-bounded by e−K

′
x , e−K

′
y respectively. For any δ ∈ (0, 1/2),

there exists a constant Cδ,X ,Y,K′x,K′y > 0 depending on the dimensions of X ,Y, their curvatures and K ′x,K ′y,
such that if γ/α < 1 and

γ

α
6

(
ε

Cδ,X ,Y,K′x,K′y

) 2
1−δ

then, at t0 = (αγ)−1/2 we have NI(ν̄x(t0), ν̄y(t0)) 6 ε. Here, ν̄x(t) = 1
t

∫ t
0
νx(s) ds and ν̄y(t) = 1

t

∫ t
0
νy(s) ds,

where νx and νy are solutions of (8).

In Corollary 1 of App. F we give more insight on the dependency of Cδ,X ,Y,K′x,K′y on the dimensions of
the manifolds and the properties of the loss `. Notice that unlike the results in §3.3, Theorem 4, ensures
convergence towards an ε-Nash equilibrium without regularization. Following Chizat [2019], it is possible to
replace the regularity assumption on the initial measures νx,0, νy,0 by a singular initialisation, at the expense
of using O(exp(d)) particles. This result, however, is not a convergence result for the measures (the reason for
time averaging), but rather on the value of the NI error. Similar results are common for mirror descent in
convex games [Juditsky et al., 2011], albeit in the discrete-time setting.
Theorem 4 does not capture the benefits of transport, as it regards it as a perturbation of mirror descent
(which corresponds to γ = 0). Since the focus is on ε arbitrarily small, through (4) we see that the relevant
regime is γ � α, i.e. when mirror descent is the main driver of the dynamics. However, it is seen empirically
that taking much higher ratios γ/α results in better performance. A satisfying explanation of this phenomenon
is still sought after in the simpler optimization setting [Chizat, 2019].
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Algorithm 1 Langevin Descent-Ascent.

1: Input: IID samples x1
0, . . . , x

n
0 from µx,0 ∈ P(X ), IID samples y1

0 , . . . , y
n
0 ∈ Y from µy,0 ∈ P(Y)

2: for t = 0, . . . , T do
3: for i = 1, . . . , n do
4: Sample ∆W i

t ∼ N (0, I)

5: xit+1 = xit − η
n

∑n
j=1∇x`(x

n,i
t , yn,jt ) +

√
2ηβ−1∆W i

t

6: Sample ∆W̄ i
t ∼ N (0, I)

7: yit+1 = yit + η
n

∑n
j=1∇y`(x

n,j
t , yn,it ) +

√
2ηβ−1∆W̄ i

t

8: Return µnx,T = 1
n

∑n
i=1 δxiT , µ

n
y,T = 1

n

∑n
i=1 δyiT

4 Algorithms and convergence to mean-field
In this section, we start from the mean-field PDEs presented in §3.2 and discretize the corresponding stochastic
differential equations (SDEs), which represent the respective forward Kolmogorov equations. From (6)
and (8), we obtain the algorithms Langevin Descent-Ascent (Alg. 1) and Wasserstein-Fisher-Rao Descent-
Ascent (Alg. 2). In the limit where the number of particles n→∞ and the time step ∆t→ 0, these algorithms
correspond directly to the PDEs. We prove this fact by showing that the dynamics defined by the algorithms
can be interpreted as the discrete scheme for coupled continuous-time differential equations that induce a
dynamic at the level of particle measures. We subsequently prove a Law of Large Numbers (LLN) ensuring
that the empirical particle distributions converge to weak solutions of the mean-field PDEs.

Langevin Descent-Ascent. First, we introduce the Langevin Descent-Ascent algorithm (Alg. 1). This
algorithm is an Euler-Maruyama time discretization of the following particle SDEs on Xn × Yn:

dXi
t = − 1

n

n∑
j=1

∇x`(Xi
t , Y

j
t ) dt+

√
2β−1 dW i

t , Xi
0 = ξi ∼ µx,0,

dY it =
1

n

n∑
j=1

∇y`(Xj
t , Y

i
t ) dt+

√
2β−1 dW̄ i

t , Y i0 = ξ̄i ∼ µy,0,
(10)

where i ∈ [1, n] and W i
t , W̄

i
t , ξ

i, ξ̄i are independent Brownian motions and random variables. (10) describes a
system of 2n interacting particles in which each particle of one player interacts with all the particles of the
other.
Let µnx = 1

n

∑n
i=1 δX(i) be the empirical measure on X of a solution of (10) and analogously, let µny denote the

empirical measure for trajectories of the particles in Y . That is, µnx ∈ P(C([0, T ],X )) and µny ∈ P(C([0, T ],Y)).
We measure convergence of the empirical measure as n → ∞ in terms of the 2-Wasserstein distance for
measures on the space of trajectories:

W2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
C([0,T ],X )2

d(x, y)2 dπ(x, y)

where d(x, y) = supt∈[0,T ] dX (x(t), y(t)). Under our assumptions, we can state the following LLN for the
empirical measures.

Theorem 5. There exists a solution of the following coupled McKean-Vlasov SDEs:

dX̃t = −
∫
Y
∇x`(X̃t, y) dµy,t dt+

√
2β−1dWt, X̃0 = ξ ∼ µx,0, µy,t = Law(Ỹt)

dỸt =

∫
X
∇y`(x, Ỹt) dµx,t dt+

√
2β−1dW̄t, Ỹ0 = ξ̄ ∼ µy,0, µx,t = Law(X̃t)

(11)

Pathwise uniqueness and uniqueness in law hold. Let µx ∈ P(C([0, T ],X )), µy ∈ P(C([0, T ],Y)) be the unique
laws of the solutions of (11). Then,

E[W2
2 (µnx , µx) +W2

2 (µny , µy)]
n→∞−−−−→ 0.
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Algorithm 2 Wasserstein-Fisher-Rao Descent-Ascent.

1: Input: IID samples x(1)
0 , . . . , x

(n)
0 from νx,0 ∈ P(X ), IID samples y(1)

0 , . . . , y
(n)
0 from νy,0 ∈ P(Y). Initial

weights: For all i ∈ [1 : n], w(i)
x = 1, w

(i)
y = 1.

2: for t = 0, . . . , T do
3: for i = 1, . . . , n do
4: x

(i)
t+1 = x

(i)
t − η

n

∑n
j=1 w

(i)
y,t∇x`(x(i)

t , y
(j)
t )

5: ŵ
(i)
x,t+1 = w

(i)
x,t exp

(
−η′ 1n

∑n
j=1 w

(j)
y,t`(x

(i)
t , y

(j)
t )
)

6: y
(i)
t+1 = y

(i)
t + η

n

∑n
j=1 w

(j)
x,t∇y`(x(j)

t , y
(i)
t )

7: ŵ
(i)
y,t+1 = w

(i)
y,t exp

(
η′ 1n

∑n
j=1 w

(j)
x,t`(x

(j)
t , y

(i)
t )
)

8: [w
(i)
x,t+1]ni=1 = [ŵ

(i)
x,t+1]ni=1/

∑n
j=1 ŵ

(j)
x,t+1

9: [w
(i)
y,t+1]ni=1 = [ŵ

(i)
y,t+1]ni=1/

∑n
j=1 ŵ

(j)
y,t+1

10: Return
ν̄nx,T = 1

n

∑n
i=1 w

(i)
x,T δx(i)

T

ν̄ny,T = 1
n

∑n
i=1 w

(i)
y,T δy(i)T

The proof of Theorem 5 uses a propagation of chaos argument, a technique studied extensively in the interacting
particle systems literature and originally due to Sznitman [1991]. Our argument follows Theorem 3.3 of Lacker
[2018].
The supremum over time ensures that W2

2 (µnx,t, µx,t) 6 W2
2 (µnx , µx), where µnx,t, µx,t are the marginals at

time t ∈ [0, T ]. Because the ERIWGF (6) is the Kolmogorov forward equation of the coupled McKean-
Vlasov SDEs (11) (Lemma 10 in App. G), we have proved that µnx , µny (seen as random elements valued
in C([0, T ],P(X )), C([0, T ],P(Y))) converge to a solution of (6). As a result, we obtain convergence in
expectation of the NI error of the particle scheme to the NI error of a PDE solution (Corollary 2 in App. G):

E[|NI(µnx,t, µny,t)−NI(µx,t, µy,t)|] n→∞−−−−→ 0,

Wasserstein-Fisher-Rao Descent-Ascent. We can carry out a similar program for discretizing the
interacting Wasserstein-Fisher-Rao gradient flow dynamics. We begin by detailing the Wasserstein-Fisher-Rao
Descent-Ascent algorithm (Alg. 2). Once again, this algorithm can be viewed as a forward Euler scheme for
ODEs corresponding to a system of particles (equation (55) in App. H). However, in this case the particles
live in X × R+ (Y × R+, resp.), and the last component corresponds to the weight. Note that the WFR
dynamics is deterministic; the only randomness arises from the initial condition.
In this case, convergence of the empirical NI error to the mean-field NI error relies again on a LLN de-
rived via a propagation of chaos argument. Define the empirical measures µnx = 1

n

∑n
j=1 δ(X(j),w

(j)
x )

and
µny = 1

n

∑n
j=1 δ(Y (j),w

(j)
y )

of the particle system (55), which are random elements valued in P(C([0, T ],X ×
R+)),P(C([0, T ],Y × R+)).

Theorem 6. There exists a solution of the following coupled mean-field ODEs:

dX̃t

dt
= −γ∇x

∫
`(X̃i

t , y)dνy,t,
dw̃x,t
dt

= α

(
−
∫
`(X̃t, y)dνy,t + L(νx,t, νy,t)

)
w̃x,t, X̃0 = ξ ∼ νx,0, w̃x,0 = 1

dỸt
dt

= γ∇y
∫
`(x, Ỹt)dνx,t,

dw̃y,t
dt

= α

(∫
`(x, Ỹt)dνx,t − L(νx,t, νy,t)

)
w̃x,t, Ỹ0 = ξ̄ ∼ νy,0, w̃y,0 = 1

νx,t = hxLaw(X̃t, w̃x,t), νy,t = hyLaw(Ỹt, w̃y,t),

(12)

where hx, hy are the projections defined in (7). Pathwise uniqueness and uniqueness in law hold. Let
µx ∈ P(C([0, T ],X × R+)), µy ∈ P(C([0, T ],Y × R+)) be the unique laws of the solution to (12). Then,

E[W2
2 (µnx , µx) +W2

2 (µny , µy)]
n→∞−−−−→ 0.

8



Theorem 6 is the law of large numbers for the WFR dynamics, and its proof follows the same argument as
Theorem 5. In App. A, we show that the IWFRGF (8) corresponds to a PDE for measures on the lifted
domains X × R+,Y × R+ (equation (14)). By Lemma 11 in App. H, the lifted PDE (14) is the forward
Kolmogorov equation for (12). Thus, Theorem 6 tells us that µnx , µny seen as random elements valued in
C([0, T ],P(X × R+)) (resp. C([0, T ],P(Y × R+))) converge to solutions of the lifted IWFRGF (14).
Denoting by ν̄nx,t, ν̄ny,t, ν̄x,t, ν̄y,t the time averages of hxµnx,t, hyµny,t, hxµx,t, hyµy,t as defined in Theorem 4, by
Corollary 3 in §H.3, we have

E[|NI(ν̄nx,t, ν̄ny,t)−NI(ν̄x,t, ν̄y,t)|] n→∞−−−−→ 0.

That is, we obtain convergence in expectation of the NI error of the particle dynamics to the NI error tracked
in Theorem 4. Notice that in the setting γ = 0, Theorem 6 gives a law of large numbers for the pure mirror
descent on measures studied by Hsieh et al. [2019].

5 Numerical Experiments
We start by showing how the WFR and Langevin dynamics outperform mirror descent in high dimension, on
synthetic games. Then, we move to practical applications for GAN training. Code has been made available
for reproducibility.

1 2 4 8 16 32
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Langevin DA Mirror DA WFR DA

1 2 4 8 16 32

Figure 1: Nikaido-Isoida errors for Langevin Descent-Ascent, WFR Descent-Ascent and mirror descent, as
a function of the problem dimension, for a nonconvex loss `1 (left) and convex loss `2 (right). LDA and
WFR-DA outperforms mirror descent for large dimensions: they suffer less from the curse of dimensionality.
WFR-DA remains efficient even in high dimensions. We vary the number of particles. Values averaged over
20 runs (resampling the coefficients of the losses and different losses for different n) after 30000 iterations.
The error bars show the standard deviation across runs

5.1 Polynomial games on spheres
We study two games with losses `1, `2 : Sd × Sd → R of the form

`1(x, y) = x>A0x+ x>A1y + y>A2y + y>A3(x2) + a>0 x+ a>1 y

`2(x, y) = x>A>0 A0x+ x>A1y + y>A>2 A2y + a>0 x+ a>1 y,

where A0, A1, A2, A3, a0, a1 are matrices and vectors with components sampled from a normal distribution
N (0, 1), and x2 is the vector given by component-wise multiplication of x. `2 is a convex loss on the sphere,
while `1 is not. We run Langevin Descent-Ascent (updates of weights) and WFR Descent-Ascent (updates of
weights and positions), and compare it with the baseline given by mirror descent (updates of weights).We
note that the computation of the NI error (2) entails solving two optimization problems on measures, or
equivalently in parameter space. We solve each of them by performing 2000 gradient descent runs with random
uniform initialization and selecting the value for the best one. This gives a lower bound on the NI error which
is precise enough for our purposes.
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Figure 2: Training mixtures of GANs over a synthetic mixture of Gaussians in 2D. Looking for mixed Nash
with mixtures bring faster convergence with models with low number of parameters, and similar performance
with over-parametrized models. Mixtures naturally perform a form of clustering of the data. Errors bars show
variance across 5 runs.

Results. We observe that while mirror descent performs like WFR-DA in low dimensions, it suffers strongly
from the curse of dimensionality (Fig. 1). On the other hand, algorithms that incorporate a transport term
keep performing well in high dimensions. In particular, WFR-DA is consistently the algorithm with lowest
NI error. We do time averaging on the weights of mirror descent and WFR-DA, but not on the positions of
WFR-DA because that would incur an O(t) overhead on memory. Notice that the errors in the n = 50 and
n = 100 plots do not differ much, confirming that we reach a mean-field regime.

5.2 Training GAN mixtures
To validate the usage of WFR-DA on a practical setting, we lift the classical GAN problem into the space of
distributions, and train deep neural networks using WFR-DA with backpropagation. Our purpose is two-fold:
(i) to show that solving for the lifted problem (13) gives satisfying results on toy and real data and (ii) to
quantify the effect of increasing the number of particles, and the effect of updating weights simultaneously to
positions.

Setting. Finding mixed Nash can be useful for minimax problems (see §I.4, Lemma 12), and in particular
to train generative adversarial models [Goodfellow et al., 2014]. These models learn to generate fake samples
using a reference set of samples {zi ∈ Z, i ∈ [n]}. For this, a neural-network generator gx : Rd → Z
transforms a noise source ε ∈ Rd into fake data gx(ε). A discrimininator function fy : X → R gives a score to
fake and real data. y maximizes a certain objective to estimate a divergence between the fake distribution
(gx(ε), ε ∼ N (0, I)) and the true distribution of data (zi)i∈[n]. The generator gx is trained to minimize this
objective. We consider the Wasserstein-GAN objective [Arjovsky et al., 2017, Gulrajani et al., 2017], that
provides the non-convex non-concave minimax problem:

min
x

max
y

`(x, y) , Ez∼pdata [fy(z)]− Eε∼N (0,I)[fy(gx(ε))].
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Figure 3: Training mixtures of GANs over CIFAR10. We compare the algorithm that updates the mixture
weights and parameters (W asserstein-F isher-Rao flow) with the algorithm that only updates parameters
(W asserstein flow). Using several discriminators and a WFR flow brings more stable convergence. Each
generator tends to specialize in a type of images. Errors bars show variance across 5 runs.

Lifting. We lift the W-GAN problem in the space of distributions over parameters x and y, that we represent
through weighted discrete distributions of generators

∑
w

(i)
x δx(i) and discriminators

∑
w

(j)
y δy(j) . We then

solve for
min

x(i),w
(i)
x

max
y(j),w

(j)
y

∑
i

∑
j

w(i)
x w(j)

y `(x(i), y(j)) , (13)

using Alg. 2, with the normalisation constraints
∑
i w

(i)
x =

∑
j w

(j)
y = 1 , w

(i)
x , w

(j)
y > 0. The optimal

generation strategy corresponding to an equilibrium point ((x(i), w
(i)
x )i, (y

(i), w
(i)
y )i) is simply to generate fake

points as gxI (ε) where I is sampled among [n] with probability w(i)
x , and ε ∼ N (0, I). Training mixtures of

generators has been proposed by Ghosh et al. [2018], with a tweaked discriminator loss. Yet training multiple
discriminators and mixture weights, without tweaking the GAN loss beyond a simple lifting is an original
endeavor.

Results on 2D GMMs. We consider a toy dataset generated by a 8-mode mixture of Gaussians in two
dimensions. We train different sizes of mixtures of GANs with and without updating weights, and compare
results to non-lifted training. We use the original W-GAN loss, with weight cropping for the discriminators
(ϕj)j . To measure the interest of using mixtures, we consider two MLP parametetrizations: the first is
deep enough (3-layers) to overfit the dataset, while the second (1-layers) is not. In this case, using mixtures
should be a way to mitigate mode collapse and under-fitting. We display results in Fig. 2. We observe faster
convergence of mixture training in the under-parametrized setting when counting the total generator updates,
that is proportional to the runtime. In the over-parametrized setting, using mixtures and a single pair of
particle achieve similar convergence speed. Qualitatively, the different generators identify modes in the real
data, thus performing a form of clustering (Fig. 2 right). Overall, the WFR dynamic is stable despite the small
number of particles (generators and discriminators), and improvements are obtained for shallow generative
modelling.
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Results on real data. We train a mixture of ResNet generators on the datasets CIFAR10 and MNIST,
using extrapolated Adam [Gidel et al., 2019] on the mixture loss defined in (13). Convergence curves for
the best learning rates are displayed in Fig. 3. We observe that with a sufficient number of generators and
discriminators (G > 5, D > 2), the model is able to train as fast as a normal GAN. The discrete dynamic
that we propose is therefore stable and efficient even with a reasonable number of particles. Updating weight
mixtures (i.e. using the discretized WFR flow) provides a slight improvement over updating parameters only.
Using too few generators or discriminators result in a loss of performance. We impute this to the training
dynamics being too far from its mean-field limit. With our method, each generator naturally focuses on a
fraction of data, thereby identifying clusters. Those may be used for deep unsupervised clustering [Caron
et al., 2019], or e.g. unsupervised conditional generation. We display images output by each generator for
CIFAR10 and MNIST. Each generates different numbers.

6 Conclusions and future work
In this work we have explored non-convex-non-concave, high-dimensional games from the perspective of
optimal transport. Similarly as with non-convex optimization over a high-dimensional space, expressing
the problem in terms of the underlying measure provides important geometric benefits, at the expense of
moving into non-Euclidean metric spaces over measures. Our main theoretical results establish approximate
mean-field convergence under two important setups: Langevin Descent-Ascent and WFR Descent-Ascent. Our
theory directly applies to challenging yet important setups such as GANs, bringing guarantees for sufficiently
overparametrised generators and discriminators.
Despite such positive convergence guarantees, our results are qualitative in nature, i.e. without rates. In
the entropic case, our analysis suffers from an unfavorable tradeoff between temperature and convergence of
the associated McKean-Vlasov scheme; while the techniques of [Eberle et al., 2019] are very general, they
don’t leverage the structure of our problem setup, so it may be interesting to explore Log-Sobolev-type
inequalities in this context instead [Markowich and Villani, 1999]. In the WFR case, we are lacking a local
convergence analysis that would explain the benefits of transport that we observe empirically, for instance
leveraging sharpness Polyak-Łojasiewicz results such as those in [Chizat, 2019] or [Sanjabi et al., 2018].
Another important open question is to obtain Central Limit Theorems for the convergence of the particle
dynamics to the mean field dynamics, in the Langevin, the Wasserstein-Fisher-Rao and the pure mirror descent
cases. We expect to see the magnitude of the fluctuations to blow-up with dimension and time for mirror
descent, as that would explain the poor performance of its associated particle dynamics. For the Langevin
and Wasserstein-Fisher-Rao cases, it is reasonable to expect a moderate growth of the fluctuations, in light of
our numerical experiments. Finally, in our GAN formulation, each generator is associated to a single particle
in a high-dimensional product space of all network parameters. In that sense, we are currently not exploiting
the exchangeablility of the neurons, as is done for instance in the single-hidden layer mean-field analyses [Mei
et al., 2018, Chizat and Bach, 2018, Rotskoff and Vanden-Eijnden, 2018, Sirignano and Spiliopoulos, 2019]. A
natural question is to understand to what extent our framework could be combined with specific choices of
architecture, as recently studied in [Lei et al., 2019].
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A Lifted dynamics for the Interacting Wasserstein-Fisher-Rao Gra-
dient Flow

Recall the IWFRGF in (8), which we reproduce here for convenience.{
∂tνx = γ∇x · (νx∇xVx(νy, x))− ανx(Vx(νy, x)− L(νx, νy)), νx(0) = νx,0

∂tνy = −γ∇y · (νy∇yVy(νx, y)) + ανy(Vy(νx, y)− L(νx, νy)), νy(0) = νy,0

Given µx ∈ P(X × R+) define νx =
∫
X wx dµx(·, wx) ∈ P(X ), that is∫

X
ϕ(x) dνx(x) =

∫
X×R+

wxϕ(x) dµx(x,wx),

for all ϕ ∈ C(X ). Given µy ∈ P(Y × R+), define νy =
∫
X wy dµy(·, wy) ∈ P(Y) analogously. We say that

µx, µy are “lifted” measures of νx, νy, and reciprocally νx, νy are “projected” measures of µx, µy.
By Lemma 1 below, we can view a solution of (8) as the projection of a solution of the following dynamics on
the lifted domains X × R+ and Y × R+:{

∂tµx = ∇wx,x · (µxgνy (x,wx)), µx(0) = νx,0 × δwx=1

∂tµy = −∇wy,y · (µygνx(y, wy)), µy(0) = νy,0 × δwy=1

(14)
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where

gνy (x,wx) = (αwx(Vx(νy, x)− L(νx, νy)), γ∇xVx(νy, x))),

gνx(y, wy) = (αwy(Vy(νx, x)− L(νx, νy)), γ∇yVy(νx, y))).

Lemma 1. For a solution µx : [0, T ]→ P(X × R+), µy : [0, T ]→ P(Y × R+) of (14), the projections νx, νy
are solutions of (8).

That is, given any ϕx ∈ C1(X ), ϕy ∈ C1(Y), we have

d

dt

∫
X
ϕx(x) dνx = −γ

∫
X
∇xϕx(x) · ∇xVx(νy, x) dνx − α

∫
X
ϕx(x)(Vx(νy, x)− L(νx, νy)) dνx, νx(0) = νx,0

d

dt

∫
Y
ϕy(y) dνy = γ

∫
Y
∇yϕy(y) · ∇yVy(νx, y)) dνy + α

∫
Y
ϕy(y)(Vy(νx, y)− L(νx, νy)) dνy, νy(0) = νy,0

(15)

From (14) in the weak form, we obtain that given any ψx ∈ C1(X × R+), ψy ∈ C1(Y × R+),

d

dt

∫
X×R+

ψx(x,wx) dµx(x,wx) =

∫
X×R+

−γ∇xψx(x,wx) · ∇xVx(νy, x)− αwx
dψx
dwx

(x,wx)(Vx(νy, x)− L(νx, νy)) dνx,

d

dt

∫
Y×R+

ψy(y, wy) dµy(y, wy) =

∫
Y×R+

γ∇yψy(y, wy) · ∇yVy(νx, y) + αwy
dψy
dwy

(y, wy)(Vy(νx, y)− L(νx, νy)) dνy,

µx(0) = νx,0 × δwx=1, µy(0) = νy,0 × δwy=1.

(16)

Taking ψx(x,wx) = wxϕx(x), ψy(y, wy) = wyϕy(y) yields

d

dt

∫
X×R+

wxϕx(x) dµx(x,wx) =

∫
X×R+

−γwx∇xϕx(x) · ∇xVx(νy, x)− αwxϕx(x)(Vx(νy, x)− L(νx, νy)) dνx,

d

dt

∫
Y×R+

wyψy(y, wy) dµy(y, wy) =

∫
Y×R+

γwy∇yϕy(y) · ∇yVy(νx, y) + αwyϕy(y)(Vy(νx, y)− L(νx, νy)) dνy.

(17)

Notice that (17) is indeed (15).

B Continuity and convergence properties of the Nikaido-Isoda error
Lemma 2. The Nikaido-Isoda error NI : P(X ) × P(Y) → R defined in (2) is continuous when we endow
P(X ),P(Y) with the topology of weak convergence. Specifically, it is Lip(`)-Lipschitz when we use the distance
W1(µx, µ

′
x) +W1(µy, µ

′
y) between (µx, µy) and (µ′x, µ

′
y) in P(X )× P(Y).

Proof. For any µy, the function Vx(µy, ·) : X → R defined as x 7→
∫
`(x, y) dµy is continuous and it has the

same Lipschitz constant Lip(`) as `. Hence, for any µx, µ′x ∈ P(X ),

sup
µy∈P(Y)

L(µx, µy)− sup
µy∈P(Y)

L(µ′x, µy) = sup
µy∈P(Y)

∫
Vx(µy, x)dµx − sup

µy∈P(Y)

∫
Vx(µy, x)dµ′x

6 sup
µy∈P(Y)

∫
Vx(µy, x)dµ′x + sup

µy∈P(Y)

∫
Vx(µy, x)d(µx − µ′x)− sup

µy∈P(Y)

∫
Vx(µy, x)dµ′x

= sup
µy∈P(Y)

∫
Vx(µy, x)d(µx − µ′x) 6 Lip(`)W1(µx, µ

′
x)

The same inequality interchanging the roles of µx, µ′x shows that | supµy∈P(Y) L(µx, µy)−supµy∈P(Y) L(µ′x, µy)| 6
Lip(`)W1(µx, µ

′
x) holds. An analogous reasoning for `(µx, ·) : Y → R and the triangle inequality complete the

proof.
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Lemma 3. Suppose that (µnx)n∈N is a sequence of random elements valued in P(X ) such that

E[W2
2 (µnx , µx)]

n→∞−−−−→ 0,

where µx ∈ P(X). Analogously, suppose that (µny )n∈N is a sequence of random elements valued in P(Y) such
that

E[W2
2 (µny , µy)]

n→∞−−−−→ 0,

where µy ∈ P(Y ).
Then,

E[|NI(µnx , µny )−NI(µx, µy)|] n→∞−−−−→ 0

Proof. First,
E[W1(µnx , µx)] 6 E[W2(µnx , µx)] 6

(
E[W2

2 (µnx , µx)]
)1/2

, (18)

which results from two applications of the Cauchy-Schwarz inequality on the appropriate scalar products. An
analogous inequality holds for E[W1(µny , µy)]. Hence, by Lemma 2,

E[|NI(µnx , µny )−NI(µx, µy)|] 6 Lip(`)E[W1(µnx , µx) +W1(µny , µy)]

6 Lip(`)
((

E[W2
2 (µnx , µx)]

)1/2
+
(
E[W2

2 (µnx , µx)]
)1/2)

6 Lip(`)
√

2
(
E[W2

2 (µnx , µx)] + E[W2
2 (µnx , µx)]

)1/2
,

where the second inequality uses (18) and the third inequality is another application of the Cauchy-Schwarz
inequality. Since the right hand side converges to 0 by assumption, this concludes the proof.

C Proof of Theorem 1
We restate Theorem 1 for convenience.

Theorem 1. Assume X ,Y are compact Polish metric spaces equipped with canonical Borel measures, and
that ` is a continuous function on X × Y. Let us consider the fixed point problem{

ρx(x) = 1
Zx
e−β

∫
`(x,y) dµy(y),

ρy(y) = 1
Zy
eβ

∫
`(x,y) dµx(x),

where Zx and Zy are normalization constants and ρx, ρy are the densities of µx, µy. This fixed point problem
has a unique solution (µ̂x, µ̂y) that is also the unique Nash equilibrium of the game given by Lβ (equation (5)).

C.1 Preliminaries
Definition 2 (Upper hemicontinuity). A set-valued function ϕ : X → 2Y is upper hemicontinuous if for
every open set W ⊂ Y , the set {x|ϕ(x) ⊂W} is open.

Alternatively, set-valued functions can be seen as correspondences Γ : X → Y . The graph of Γ is Gr(Γ) =
{(a, b) ∈ X × Y |b ∈ Γ(a)}. If Γ is upper hemicontinuous, then Gr(Γ) is closed. If Y is compact, the converse
is also true.

Definition 3 (Kakutani map). Let X and Y be topological vector spaces and ϕ : X → 2Y be a set-valued
function. If Y is convex, then ϕ is termed a Kakutani map if it is upper hemicontinuous and ϕ(x) is non-empty,
compact and convex for all x ∈ X.

Theorem 7 (Kakutani-Glicksberg-Fan). Let S be a non-empty, compact and convex subset of a Hausdorff
locally convex topological vector space. Let ϕ : S → 2S be a Kakutani map. Then ϕ has a fixed point.

Definition 4 (Lower semi-continuity). Suppose X is a topological space, x0 is a point in X and f : X →
R ∪ {−∞,∞} is an extended real-valued function. We say that f is lower semi-continuous (l.s.c.) at x0 if for
every ε > 0 there exists a neighborhood U of x0 such that f(x) > f(x0)− ε for all x in U when f(x0) < +∞,
and f(x) tends to +∞ as x tends towards x0 when f(x0) = +∞.
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We can also characterize lower-semicontinuity in terms of level sets. A function is lower semi-continuous if
and only if all of its lower level sets {x ∈ X : f(x) 6 α} are closed. This property will be useful.

Theorem 8 (Weierstrass theorem for l.s.c. functions). Let f : T → (−∞,+∞] be a l.s.c. function on a
compact Hausdorff topological space T . Then f attains its infimum over T , i.e. there exists a minimum of f
in T .

Proof. Proof. Let α0 = inf f(T ). If α0 = +∞, then f is infinite and the assertion trivially holds. Let
α0 < +∞. Then, for each real α > α0, the set {f 6 α} is closed and nonempty. Any finite collection of such
sets has a nonempty intersection. By compactness, also the set

⋂
α>α0

{f 6 α} = {f 6 α0} = f−1(α0) is
nonempty. (In particular, this implies that α0 is finite.)

Remark 1. By Prokhorov’s theorem, since X and Y are compact separable metric spaces, P(X ) and P(Y)
are compact in the topology of weak convergence.

C.2 Existence
Lemma 4 and 5 are intermediate results, and Lemma 6 shows existence of the solution.

Lemma 4. For any µy ∈ P(Y), Lβ(·, µy) : P(X ) → R is lower semicontinuous, and it achieves a unique
minimum in P(X ). Moreover, the minimum mx(µy) is absolutely continuous with respect to the Borel measure,
it has full support and its density takes the form

dmx(µy)

dx
(x) =

1

Zµy
e−β

∫
L(x,y)dµy , (19)

where Zµy is a normalization constant.
Analogously, for any µx ∈ P(X ), −Lβ(µx, ·) : P(Y)→ R is lower semicontinuous, and it achieves a unique
minimum in P(Y). The minimum my(µx) is absolutely continuous with respect to the Borel measure, it has
full support and its density takes the form

dmy(µx)

dy
(y) =

1

Zµx
eβ

∫
L(x,y)dµx ,

where Zµx is a normalization constant.

Proof. We will prove the result for Lβ(·, µy), as the other one is analogous. Let dx denote the canonical
Borel measure on X , and let p̃ be the probability measure proportional to the canonical Borel measure, i.e.
dp̃
dx = 1

vol(X ) . Notice that vol(X ) is by definition the value of the canonical Borel measure on the whole X . We
rewrite

Lβ(µx, µy) =

∫∫
`(x, y)dµydµx + β−1

∫
log

(
dµx
dx

)
dµx + β−1H(µy)

=

∫∫
`(x, y)dµydµx + β−1

∫
log

(
dµx
dp̃

dp̃

dx

)
dµx + β−1H(µy)

=

∫∫ (
`(x, y)− β−1 log (vol(X ))

)
dµydµx + β−1

∫
log

(
dµx
dp̃

)
dµx + β−1H(µy)

Notice that the first term in the right hand side is a lower semi-continuous (in weak convergence topology)
functional in µx when µy is fixed. That is because it is a linear functional in µx with a continuous integrand,
which implies that it is continuous in the weak convergence topology. The second to last term can be seen as
the relative entropy (or Kullback-Leibler divergence) between µx and p̃:

Hp̃(µx) :=

∫
log

(
dµx
dp̃

)
dµx

The relative entropy Hp̃(µx) is a lower semi-continuous functional with respect to µx (see Theorem 1 of Posner
[1975], which proves a stronger statement: joint semi-continuity with respect to both measures).
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Therefore, we conclude that Lβ(·, µy) (with µy ∈ P(Y) fixed) is a l.s.c. functional on P(X ). By Theorem 8
and using the compactness of P(X ), there exists a minimum of Lβ(·, µy) in P(X ).
Denote a minimum of Lβ(·, µy) by µ̂x. µ̂x must be absolutely continuous, because otherwise −β−1H(µ̂x)
would take an infinite value. By the Euler-Lagrange equations for functionals on probability measures, a
necessary condition for µ̂x to be a minimum of Lβ(·, µy) is that the first variation δLβ(·,µy)

δµx
(µ̂x)(x) must take

a constant value for all x ∈ supp(µ̂x) and values larger or equal outside of supp(µ̂x). The intuition behind
this is that otherwise a zero-mean signed measure with positive mass on the minimizers of δLβ(·,µy)

δµx
(µ̂x) and

negative mass on the maximizers would provide a direction of decrease of the functional. We compute the
first variation at µ̂x:

δLβ(·, µy)

δµx
(µ̂x)(x) =

δ

δµx

(∫
L(x, y)dµydµx − β−1H(µ̂x) + β−1H(µy)

)
=

∫
L(x, y)dµy + β−1 log

(
dµ̂x
dx

(x)

)
,

We equate
∫
`(x, y)dµy + β−1 log(dµ̂xdx (x)) = K, ∀x ∈ supp(µ̂x), where K is a constant. The first variation

must take values larger or equal than K outside of supp(µ̂x), but since log(dµ̂xdx (x)) = −∞ outside of supp(µ̂x),
we obtain that supp(µ̂x) = X . Then, for all x ∈ X ,

dµ̂x
dx

(x) = e−β
∫
L(x,y)dµy+βK =

1

Zµy
e−β

∫
L(x,y)dµy

where Zµy is a normalization constant obtained from imposing
∫
dµ̂x
dx (x) dx =

∫
1 dµ̂x = 1. Since the necessary

condition for optimality specifies a unique measure and the minimum exists, we obtain that mx(µy) = µ̂x is
the unique minimum. An analogous argument holds for my(µ̂x)

Lemma 5. Suppose that the measures (µy,n)n∈N and µy are in P(Y). Recall the definition of mx : P(Y)→
P(X ) in equation (19). If (µy,n)n∈N converges weakly to µy, then (mx(µy,n))n∈N converges weakly to mx(µy),
i.e. mx is a continuous mapping when we endow P(Y) and P(X ) with their weak convergence topologies.
The same thing holds for my and measures (µx,n)n∈N and µx on X .

Proof. Given x ∈ X , we have
∫
`(x, y)dµy,n →

∫
`(x, y)dµy, because `(x, ·) is a continuous bounded function

on Y . By continuity of the exponential function, we have that for all x ∈ X , e−β
∫
`(x,y)dµy,n → e−β

∫
`(x,y)dµy .

Using the dominated convergence theorem,∫
X
e−β

∫
`(x,y)dµy,ndx→

∫
X
e−β

∫
`(x,y)dµydx

We need to find a dominating function. It is easy, because ∀n ∈ N, ∀x ∈ X , e−β
∫
`(x,y)dµy,n 6 e−βmin(x,y)∈X×Y `(x,y).

And
∫
X e
−βmin(x,y)∈X×Y `(x,y)dx = e−βmin(x,y)∈X×Y `(x,y)vol(X ) < ∞. By the Portmanteau theorem, we just

need to prove that for all continuity sets B of mx(µy), we have mx(µy,n)(B)→ mx(µy)(B). This translates to∫
B
e−β

∫
`(x,y)dµy,ndx∫

X e
−β

∫
`(x,y)dµy,ndx

→
∫
B
e−β

∫
`(x,y)dµydx∫

X e
−β

∫
`(x,y)dµydx

We have proved that the denominators converge appropriately, and the numerator converges as well using the
same reasoning with dominated convergence. And both the numerators and the denominators are positive
and the numerator is always smaller denominator, the quotient must converge.

Lemma 6. There exists a solution of (9), which is the Nash equilibrium of the game given by Lβ (equation
(5)).

Proof. We use Theorem 7 on the set P(X )× P(Y), with the map m : P(X )× P(Y)→ P(X )× P(Y) given
by m(µx, µy) = (mx(µy),my(µx)). The only condition to check is upper hemicontinuity of m. By Lemma 5
we know that mx,my are continuous, and since continuous functions are upper hemicontinuous as set valued
functions, this concludes the argument. Indeed, we could have used Tychonoff’s theorem, which is similar to
Theorem 7 but for single-valued functions.
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C.3 Uniqueness
Lemma 7. The solution of (9) is unique.

Proof. The argument is analogous to the proof of Theorem 2 of Rosen [1965]. Suppose (µx,1, µy,1) and
(µx,2, µy,2) are two different solutions of (9). Hence, there exist constants Kx,1,Ky,1,Kx,2,Ky,2 such that

δF1

δµx
(µx,1, µy,1)(x) +Kx,1 = 0,

δF2

δµy
(µx,1, µy,1)(y) +Ky,1 = 0

δF1

δµx
(µx,2, µy,2)(x) +Kx,2 = 0,

δF2

δµy
(µx,2, µy,2)(y) +Ky,2 = 0

On the one hand, we know that∫
δF1

δµx
(µx,1, µy,1)(x) d(µx,2 − µx,1) +

∫
δF2

δµy
(µx,1, µy,1)(y) d(µy,2 − µy,1)

+

∫
δF1

δµx
(µx,2, µy,2)(x) d(µx,1 − µx,2) +

∫
δF2

δµy
(µx,2, µy,2)(y) d(µy,1 − µy,2)

= −
∫
Kx,1 d(µx,2 − µx,1)−

∫
Ky,1 d(µy,2 − µy,1)−

∫
Kx,2 d(µx,1 − µx,2)−

∫
Ky,2 d(µy,1 − µy,2) = 0

(20)

We will now prove that the left hand side of (20) must be strictly larger than 0, reaching a contradiction. We
can write

δF1

δµx
(µx,2, µy,2)(x)− δF1

δµx
(µx,1, µy,1)(x) =

∫
L(x, y) d(µy,2 − µy,1) + β−1(log(µx,2(x))− log(µx,1(x)))

δF2

δµy
(µx,2, µy,2)(x)− δF2

δµy
(µx,1, µy,1)(x) = −

∫
L(x, y) d(µx,2 − µx,1) + β−1(log(µy,2(x))− log(µy,1(x)))

Hence, we rewrite the left hand side of (20) as∫∫
L(x, y) d(µy,2 − µy,1)d(µx,2 − µx,1) + β−1

∫
(log(µx,2(x))− log(µx,1(x))) d(µx,2 − µx,1)

−
∫∫

L(x, y) d(µx,2 − µx,1)d(µy,2 − µy,1) + β−1

∫
(log(µy,2(x))− log(µy,1(x))) d(µy,2 − µy,1)

= β−1(Hµx,1(µx,2) +Hµx,2(µx,1) +Hµy,1(µy,2) +Hµy,1(µy,2)).

Since the relative entropy is always non-negative and zero only if the two measures are equal, we have reached
the desired contradiction.

D Proof of Theorem 2
Theorem 2. Let K` := maxx,y `(x, y)−minx,y `(x, y) be the length of the range of `. Let ε > 0, δ := ε/(2Lip(`))
and Vδ be a lower bound on the volume of a ball of radius δ in X ,Y. Then the solution (µ̂x, µ̂y) of (9) is an
ε-Nash equilibrium of the game given by L when

β >
4

ε
log

(
2

1− Vδ
Vδ

(2K`/ε− 1)

)
.

Proof. We will use the shorthand Vx(x) = Vx(µ̂y)(x) =
∫
L(x, y)dµ̂y, Vy(y) = Vy(µ̂x)(y) =

∫
L(x, y)dµ̂x.

Since ` : X × Y → R is a continuous function on a compact metric space, it is uniformly continuous. Hence,

∀ε > 0,∃δ > 0 st.
√
d(x, x′)2 + d(y, y′)2 < δ =⇒ |`(x, y)− `(x′, y′)| < ε
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Which means that

d(x, x′) < δ =⇒ |Vx(x)− Vx(x′)| =
∣∣∣∣ ∫ (`(x, y)− `(x′, y))dy

∣∣∣∣ < ε

This proves that Vx is uniformly continuous on X (and Vy is uniformly continuous on Y using the same
argument).
We can write the Nikaido-Isoda function of the game with loss L (equation (1)) evaluated at (µ̂x, µ̂y) as

NI(µ̂x, µ̂y) := L(µ̂x, µ̂y)−min
µ′x
{L(µ′x, µ̂y)}+ (−L(µ̂x, µ̂y) + max

µ′y
{L(µ̂x, µ

′
y)})

=

∫
Vx(x)e−βVx(x)dx∫
e−βVx(x)dx

− min
x∈C1

Vx(x) +
−
∫
Vy(y)eβVy(y)dy∫
eβVy(y)dy

+ max
y∈C2

Vy(y)
(21)

The second equality follows from the definitions of L, Vx, Vy. We observe that in the right-most expression the
first two terms and the last two terms are analogous. Let us show the first two terms can be made smaller
than an arbitrary ε > 0 by taking β large enough; the last two will be dealt with in an analogous manner. Let
us define Ṽx(x) = Vx(x)−minx′∈C1 Vx(x′).∫

Vx(x)e−βVx(x)dx∫
e−βVx(x)dx

− min
x∈C1

Vx(x) =

∫
(Vx(x)−minx′∈C1 Vx(x′))e−βVx(x)dx∫

e−βVx(x)dx

=

∫
Ṽx(x)e−βVx(x)1{Ṽx(x)6ε/2}dx+

∫
Ṽx(x)e−βVx(x)1{ε/2<Ṽx(x)6ε}dx+

∫
Ṽx(x)e−βVx(x)1{ε<Ṽx(x)}dx∫

e−βVx(x)1{Ṽx(x)6ε/2}dx+
∫
e−βVx(x)1{ε/2<Ṽx(x)6ε}dx+

∫
e−βVx(x)1{ε<Ṽx(x)}dx

(22)

Let us define

q{Ṽx(x)6ε/2} =

∫
e−βVx(x)1{Ṽx(x)6ε/2}dx,

and q{ε/2<Ṽx(x)6ε} and q{ε<Ṽx(x)} analogously.
Similarly, let

r{Ṽx(x)6ε/2} =

∫
Ṽx(x)e−βVx(x)1{Ṽx(x)6ε/2}dx,

and r{ε/2<Ṽx(x)6ε} and r{ε<Ṽx(x)} analogously.
Let

p̃ =
q{ε/2<Ṽx(x)6ε}

q{Ṽx(x)6ε/2} + q{ε/2<Ṽx(x)6ε} + q{ε<Ṽx(x)}

Then, we can rewrite the right-most expression of (22) as

r{Ṽx(x)6ε/2} + r{ε/2<Ṽx(x)6ε} + r{ε<Ṽx(x)}

q{Ṽx(x)6ε/2} + q{ε/2<Ṽx(x)6ε} + q{ε<Ṽx(x)}
= p̃

r{ε/2<Ṽx(x)6ε}

q{ε/2<Ṽx(x)6ε}
+ (1− p̃)

r{Ṽx(x)6ε/2} + r{ε<Ṽx(x)}

q{Ṽx(x)6ε/2} + q{ε<Ṽx(x)}
(23)

Since Ṽ (x) 6 ε in the set {x|ε/2 < Ṽx(x) 6 ε}, r{ε/2<Ṽx(x)6ε}/q{ε/2<Ṽx(x)6ε} 6 ε.
Let xmin be such that V (xmin) = minx∈C1

V (x) (possibly not unique). By uniform continuity of Vx, we know
there exists δ > 0 (dependent only on ε) such that B(xmin, δ) ⊆ {x|Ṽx(x) 6 ε/2}. The following inequalities
hold:

r{Ṽx(x)6ε/2} 6
ε

2
q{Ṽx(x)6ε/2},

r{ε<Ṽx(x)} 6 (max
x∈C1

Vx(x)− min
x∈C1

Vx(x))q{ε<Ṽx(x)} 6 (max
x,y

L(x, y)−min
x,y

L(x, y))q{ε<Ṽx(x)}

= KLq{ε<Ṽx(x)}.

(24)
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where we define K` = maxx,y `(x, y)−minx,y `(x, y). Using (24), we obtain

r{Ṽx(x)6ε/2} + r{ε<Ṽx(x)}

q{Ṽx(x)6ε/2} + q{ε<Ṽx(x)}
6

ε
2q{Ṽx(x)6ε/2} +KLq{ε<Ṽx(x)}

q{Ṽx(x)6ε/2} + q{ε<Ṽx(x)}
.

If the right-hand side is smaller or equal than ε, then equation (23) would be smaller than ε and the proof would
be concluded. For that to happen, we need (K`−ε)q{ε<Ṽx(x)} 6

ε
2q{Ṽx(x)6ε/2} ⇐⇒ q{Ṽx(x)6ε/2}/q{ε<Ṽx(x)} >

2(K`/ε− 1). The following bounds hold:

q{Ṽx(x)6ε/2} > Vol(B(xmin, δ))e
−β(minx∈C1 Vx(x)+ε/2),

q{ε<Ṽx(x)} 6 (1−Vol(B(xmin, δ)))e
−β(minx∈C1 Vx(x)+ε).

Thus, the following condition is sufficient:

Vol(B(xmin, δ))

1−Vol(B(xmin, δ))
eβε/2 > 2(KL/ε− 1).

Hence, if we take

β >
2

ε
log

(
2

1−Vol(B(xmin, δ))

Vol(B(xmin, δ))
(KL/ε− 1)

)
(25)

then (µ̂x, µ̂y) is an ε-Nash equilibrium. Since we have only bound the first two terms in the right hand side of
(21) and the other two are bounded in the same manner, the statement of the theorem results from setting
ε = ε/2 in (25).

E Proof of Theorem 3
Theorem 3. Suppose that Asm. 1 holds, ` ∈ C2(X × Y) and that ∇Vx(µy, ·) ∈ L∞(0, T ;Ldx(X )) and
∇Vy(µx, ·) ∈ L∞(0, T ;Ldy (Y)) Then, there exists only one stationary solution of the ERIWGF (6) and it is
the solution of the fixed point problem (9).

Proof. In general, to guarantee existence of weak solutions to parabolic PDEs like the Fokker-Planck equation,
one needs conditions on the integrability of the drift term. For example, to ensure well-posedness and
uniqueness of a solution µ ∈ P([0, T ] × X ) we need only that the drift is in L∞(0, T ;Ldx(X )) Porretta
[2015]. This type of condition can be extended to a larger class of parabolic PDEs using the Aronson-Serrin
conditions Aronson and Serrin [1967]. In our setting, the drifts are given by ∇Vx(µy, ·) and −∇Vy(µx, ·). Due
to the Lipschitz assumption on `, the assumption on the gradients of Vx and Vy is quite mild.
First, we show that any pair µ̂x, µ̂y such that

dµ̂x
dx

(x) =
1

Zx
e−β

∫
`(x,y) dµ̂y(y),

dµ̂y
dy

(y) =
1

Zy
eβ

∫
`(x,y) dµ̂x(x)

is a stationary solution of (6). Denoting the Radon-Nikodym derivatives dµ̂x
dx ,

dµ̂y
dy by ρ̂x, ρ̂y, it is sufficient to

see that {
0 = ∇x · (ρ̂x∇xVx(µy, x)) + β−1∆xρ̂x

0 = −∇y · (ρ̂y∇yVy(µx, y)) + β−1∆yρ̂y
(26)

holds weakly. And

∇xρ̂x =
1

Zx
e−β

∫
`(x,y) dµ̂y(y)

(
−β∇x

∫
`(x, y) dµ̂y(y)

)
= −ρ̂x∇xVx(µ̂y, x),

∇yρ̂y =
1

Zy
eβ

∫
`(x,y) dµ̂x(x)

(
β∇y

∫
`(x, y) dµ̂x(x)

)
= ρ̂y∇yVy(µ̂x, y),
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implies that (26) holds.
Now, suppose that µ̂x, µ̂y are (weak) stationary solutions of (6). That is, if ϕx ∈ C2(X ), ϕy ∈ C2(Y) are
arbitrary twice continuously differentiable functions, the following holds

0 =

∫
X

(
−
∫
Y
∇xϕx(x) · ∇x`(x, y) dµ̂y + β−1∆xϕx(x)

)
dµ̂x

0 =

∫
Y

(∫
X
−∇yϕy(y) · ∇y`(x, y) dµ̂x − β−1∆yϕy(x, y)

)
dµ̂y

(27)

Consider the problem

∂tρx(x, t) = ∇x ·
(
ρx(x, t)

∫
X
∇x`(x, y) dµy(y)

)
+ β−1∆xρx(x, t),

ρx(x, t) dx→ µ̂x weakly as t→ 0.

(28)

And also the weak formulation:

d

dt

∫
X
ϕx(x)dµx(x, t) =

∫
X

(
−
∫
Y
∇xϕx(x) · ∇x`(x, y) dµ̂y(y) + β−1∆xϕx(x)

)
dµx(x, t)

µx(x, t)→ µ̂x weakly as t→ 0

(29)

Because the drift terms fulfill the Aronson-Serrin conditions, there exists a unique solution to (29), and this
solution is a stationary one by the first equation of (27). Since the solution ρx of (28) is the density of a
solution to the weak problem (29), ρx must fulfill

ρx(x, t) dx = µ̂x(x, t), ∀t > 0

That is, µ̂x has a C2 density that is a stationary solution of (28). The only unique stationary distributions of
(28) are the Gibbs measures. The proof is a classical argument (see for example Chapter 4 of Pavliotis [2014])
which reduces the problem to checking that the unique stationary solutions of the corresponding backward
Kolmogorov equation are constants. Thus, we obtain:

dµ̂x
dx

(x) =
1

Zµ̂y
e−β

∫
`(x,y) dµy(y)dx,

where Zµ̂x is a normalization constant. Reproducing the argument for the other player, we conclude:

dµ̂y
dy

(y) =
1

Zµ̂y
eβ

∫
`(x,y) dµx(x)dy,

Hence, we have shown that all stationary measures for the ERIWGF are fixed points of (9).

F Proof of Theorem 4
Recall the expression of an Interacting Wasserstein-Fisher-Rao Gradient Flow (IWFRGF) in (8):

∂tνx = γ∇ · (νx∇xVx(νy, x))

−ανx(Vx(νy, x)− L(νx, νy)), νx(0) = νx,0

∂tνy = −γ∇ · (νy∇yVy(νx, y))

+ανy(Vy(νx, y)− L(νx, νy)), νy(0) = νy,0

The aim is to obtain a global convergence result like the one in Theorem 3.8 of Chizat [2019]. First, we will
rewrite Lemma 3.10 of Chizat [2019] in our case.
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Lemma 8. Let νx, νy be the solution of the IWFRGF in (8). Let ν?x, ν?y be arbitrary measures on X ,Y. Let
ν̄x(t) = 1

t

∫ t
0
νx(s) ds and ν̄y(t) = 1

t

∫ t
0
νy(s) ds. Let ‖ · ‖BL be the bounded Lipschitz norm, i.e. ‖f‖BL =

‖f‖∞ + Lip(f). Let

Qν?,ν0(τ) = inf
ν∈P(Θ)

‖ν? − ν‖∗BL +
1

τ
H(ν, ν0) (30)

with Θ = X or Y. Let

B =
1

2

(
max

x∈X ,y∈Y
`(x, y)− min

x∈X ,y∈Y
`(x, y)

)
+ Lip(`) (31)

Then,

L(ν̄x(t), ν?y )− L(ν?x, ν̄y(t)) 6 BQν?x,νx,0(αBt) +BQν?y ,νy,0(αBt) + βB2t (32)

Proof. The proof is as in Lemma 3.10 of Chizat [2019], but in this case we have to do everything twice.
Namely, we define the dynamics

dνεx
dt

= γ∇ · (νεx∇Vx(νy, x))

dνεy
dt

= −γ∇ · (νεy∇Vy(νx, y))

initialized at νεx(0) = νεx,0, ν
ε
y(0) = νεy,0 arbitrary such that νεx,0 and νεy,0 are absolutely continuous with respect

to νx,0 and νy,0 respectively.
Let us show that

1

α

d

dt
H(νεx, νx) =

∫
δL
δνx

(νx, νy)(x) d(νεx − νx) (33)

where H(νεx, νx) is the relative entropy, i.e.

d

dt
H(νεx, νx) =

d

dt

∫
log (ρεx) dνεx,

ρεx being the Radon-Nikodym derivative dνεx/dνx.
Assume to begin with that νεx remains absolutely continuous with respect to νx through time. We can write

d

dt

∫
ϕx(x)ρεx(x)dνx(x) =

d

dt

∫
ϕ(x)dνεx(x)

We can develop the left hand side into

d

dt

∫
ϕx(x)ρεx(x)dνx(x) =

∫
−γ∇(ϕx(x)ρεx(x)) · ∇Vx(νy, x)− αϕx(x)ρεx(x)(Vx(νy, x)− L(νx, νy))dνx(x)

+

∫
ϕx(x)

∂ρεx
∂t

(x)dνx(x)

=

∫
−γ(∇ϕx(x)ρεx(x) + ϕx(x)∇ρεx(x)) · ∇Vx(νy, x) dνx(x)

+

∫
−αϕx(x)ρεx(x)(Vx(νy, x)− L(νx, νy))dνx(x) +

∫
ϕx(x)

∂ρεx
∂t

(x)dνx(x)

and the right hand side into

d

dt

∫
ϕ(x)dνεx(x) =

∫
−γ∇ϕx(x) · ∇Vx(νy, x)dνεx(x)
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Note that comparing terms, we obtain∫
−γϕx(x)∇ρεx(x) · ∇Vx(νy, x)− αϕx(x)ρεx(x)(Vx(νy, x)− L(νx, νy)) + ϕx(x)

∂ρεx
∂t

(x) dνx(x) = 0

Since ϕx is arbitrary, it must be that

−γ∇ρεx(x) · ∇Vx(νy, x) = αρεx(x)(Vx(νy, x)− L(νx, νy))− ∂

∂t
ρεx(x) (34)

holds νx-almost everywhere. Now,

d

dt

∫
log (ρεx) dνεx = −γ

∫
∇ (log (ρεx(x))) · ∇Vx(νy, x) dνεx(x) = −γ

∫
1

ρεx(x)
∇ (ρεx(x)) · ∇Vx(νy, x) dνεx(x)

= α

∫
(Vx(νy, x)− L(νx, νy)) dνεx(x)−

∫
1

ρεx(x)

∂

∂t
ρεx(x)dνεx(x)

Here, ∫
1

ρεx(x)

∂

∂t
ρεx(x)dνεx(x) =

∫
∂

∂t
ρεx(x)dνx(x) = 0

And since

L(νx, νy) =

∫
δL
δνx

(νx, νy)(x) dνx,

the second term yields (33). We assumed that ρεx existed and was regular enough. To make the argument
precise, we can define the density of νεx with respect to νx to be a solution ρεx of (34), and thus specify νεx.
Now, recall that ν?x is an arbitrary measure in P(X ). By convexity of L with respect to µx,∫

δL
δνx

(νx, νy)(x) d(νεx − νx) =

∫
δL
δνx

(νx, νy)(x) d(ν?x − νx) +

∫
δL
δνx

(νx, νy)(x) d(νεx − ν?x)

6 −(L(νx, νy)− L(ν?x, νy)) + ‖ δL
δνx

(νx, νy)‖BL‖νεx − ν?x‖∗BL

(35)

Notice that we can take ‖ δLδνx (νx, νy)‖BL to be smaller than B (defined in (31)). If we integrate (33) and (35)
from 0 to t and divide by t, we obtain

1

t

∫ t

0

L(νx(s), νy(s)) ds− 1

t

∫ t

0

L(ν?x, νy(s)) ds

6
1

αt
(H(νεx,0, νx,0)−H(νεx(t), νx(t))) +

B

t

∫ t

0

‖νεx − ν?x‖∗BL ds

(36)

We bound the last term on the RHS:

B

t

∫ t

0

‖νεx − ν?x‖∗BL ds 6 B‖νεx,0 − ν?x‖∗BL +
B

t

∫ t

0

‖νεx,0 − νεx‖∗BL ds (37)

And

‖νεx(t)− νεx,0‖∗BL = sup
‖f‖BL61,f∈C2(X )

∫
f d(νεx(t)− νεx,0) = sup

‖f‖BL61,f∈C2(X )

∫ t

0

d

ds

∫
f dνεx(s) ds

= sup
‖f‖BL61,f∈C2(X )

−
∫ t

0

∫
β∇f(x) · ∇ δL

δνx
(νεx, νy)(x) dνεx(s) ds 6

∫ t

0

∫
βB dνεx(s) ds = βBt

(38)

Also, by concavity of L with respect to µy,

−1

t

∫ t

0

L(ν?x, νy(s)) ds > −L(ν?x, ν̄y(t)) (39)
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If we use (37), (38) and (39) and the non-negativeness of the relative entropy on (36), we obtain:

1

t

∫ t

0

L(νx(s), νy(s)) ds− L(ν?x, ν̄y(t)) 6
1

4αt
H(νεx,0, νx,0) +B‖νεx,0 − ν?x‖∗BL +

B2β

2
t (40)

−1

t

∫ t

0

L(νx(s), νy(s)) ds+ L(ν̄x(t), ν?y ) 6
1

4αt
H(νεy,0, νy,0) +B‖νεy,0 − ν?y‖∗BL +

B2β

2
t (41)

Equation (41) is obtained by performing the same argument switching the roles of x and y, and L by −L. By
adding equations (40) and (41) and considering the definition of Q in (30), we obtain the inequality (32).

Notice that by taking the supremum wrt ν?x, ν?y on (32) we obtain a bound on the Nikaido-Isoda error of
(ν̄x(t), ν̄y(t)) (see (2)).
Next, we will obtain a result like Lemma E.1 from Chizat [2019] in which we bound Q. The proof is a variation
of the argument in Lemma E.1 from Chizat [2019], as in our case no measures are necessarily sparse.

Lemma 9. Let Θ be a Riemannian manifold of dimension d. Assume that Vol(Bθ,ε) > e−Kεd for all θ ∈ Θ,
where the volume is defined of course in terms of the Borel measure1 of Θ. If ρ := dν0

dθ is the Radon-Nikodym
derivative of ν0 with respect to the Borel measure of Θ, assume that ρ(θ) > e−K

′
for all θ ∈ Θ. The function

Qν?,ν0(τ) defined in (30) can be bounded by

Qν?,ν0(τ) 6
d

τ
(1− log d+ log τ) +

1

τ
(K +K ′)

Proof. We will choose νε in order to bound the infimum. For θ ∈ Θ, ε > 0, let ξθ,ε be a probability measure
on Θ with support on the ball Bθ,ε of radius ε centered at θ and proportional to the Borel measure for all
subsets of the ball. Let us define the measure

νε(A) =

∫
Θ

ξθ,ε(A) dν?(θ)

for all Borel sets A of X . Now, we can bound ‖νε − ν?‖∗BL 6 W1(νε, ν?). Let us consider the coupling γ
between νε and ν? defined as:

γ(A×B) =

∫
A

ξθ,ε(B) dν?(θ)

for A,B arbitrary Borel sets of Θ. Notice that γ is indeed a coupling between νε and ν?, because γ(A×Θ) =
ν?(A) and γ(Θ×B) = νε(B). Hence,

W1(νε, ν?) 6
∫

Θ×Θ

dΘ(θ, θ′) dγ(θ, θ′) =

∫
Θ

1

Vol(Bθ′,ε)

∫
Bθ′,ε

dΘ(θ, θ′) dθ dν?(θ′) (42)

where the inner integral is with respect to the Borel measure on Θ. Since dΘ(θ, θ′) 6 ε for all θ ∈ Bθ′,ε, we
conclude from that (42) that W1(νε, ν?) 6 ε.
Next, let us bound the relative entropy term. Define ρε as the Radon-Nikodym derivative of νε with respect
to the Borel measure of Θ, i.e.

ρε(θ) :=
dνε

dθ
(θ) =

∫
Θ

1

Vol(Bθ′,ε)
1Bθ′,ε(θ) dν

?(θ′).

Also, recall that ρ := dν0
dθ . Then, we write

H(νε, ν0) =

∫
Θ

log
ρε
ρ
dνε =

∫
Θ

log(ρε)ρεdθ −
∫

Θ

log(ρ)ρεdθ. (43)

1The metric of the manifold gives a natural choice of a Borel (volume) measure, the one given by integrating the canonical
volume form.
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On the one hand, we use the convexity of the function x→ x log x:

ρε(θ) log ρε(θ) =

(∫
Θ

1

Vol(Bθ′,ε)
1Bθ′,ε(θ) dν

?(θ′)

)
log

(∫
Θ

1

Vol(Bθ′,ε)
1Bθ′,ε(θ) dν

?(θ′)

)
6
∫

Θ

(
1

Vol(Bθ′,ε)
1Bθ′,ε(θ)

)
log

(
1

Vol(Bθ′,ε)
1Bθ′,ε(θ)

)
dν?(θ′).

We use Fubini’s theorem:∫
Θ

ρε(θ) log ρε(θ) dθ 6
∫

Θ

∫
Θ

(
1

Vol(Bθ′,ε)
1Bθ′,ε(θ)

)
log

(
1

Vol(Bθ′,ε)
1Bθ′,ε(θ)

)
dθ dν?(θ′)

=

∫
Θ

1

Vol(Bθ′,ε)

∫
Bθ′,ε

− log (Vol(Bθ′,ε)) dθ dν?(θ′) = −
∫

Θ

log (Vol(Bθ′,ε)) dν?(θ′) 6 −d log ε+K
(44)

where d is the dimension of Θ and K is a constant such that Vol(Bθ′,ε) > e−Kεd for all θ′ ∈ Θ.
On the other hand,

−
∫

Θ

log(ρ(θ))ρε(θ) dθ =

∫
Θ

1

Vol(Bθ′,ε)

∫
Vol(Bθ′,ε)

− log(ρ(θ)) dθ dν?(θ′)

6
∫

Θ

1

Vol(Bθ′,ε)

∫
Vol(Bθ′,ε)

K ′ dθ dν?(θ′) = K ′
(45)

where K ′ is defined such that ρ(θ) > e−K
′
for all θ ∈ Θ.

By plugging (44) and (45) into (43) we obtain:

‖ν? − νε‖∗BL +
1

τ
H(νε, ν0) 6 ε+

1

τ
(−d log ε+K +K ′).

If we optimize the bound with respect to ε we obtain the final result.

Theorem 4. Let ε > 0 arbitrary. Suppose that νx,0, νy,0 are such that their Radon-Nikodym derivatives with
respect to the Borel measures of X ,Y are lower-bounded by e−K

′
x , e−K

′
y respectively. For any δ ∈ (0, 1/2),

there exists a constant Cδ,X ,Y,K′x,K′y > 0 depending on the dimensions of X ,Y, their curvatures and K ′x,K ′y,
such that if β/α < 1 and

β

α
6

(
ε

Cδ,X ,Y,K′x,K′y

) 2
1−δ

Then, at t0 = (αβ)−1/2 we have

NI(ν̄x(t0), ν̄y(t0)) := sup
ν?x,ν

?
y

L(ν̄x(t0), ν?y )− L(ν?x, ν̄y(t0)) 6 ε

Proof. We plug the bound of Theorem 9 into the result of Theorem 8, obtaining

L(ν̄x(t), ν?y )− L(ν?x, ν̄y(t)) 6
dx
αt

(1− log dx + log(αBt))

+
dy
αt

(1− log dy + log(αBt))

+
1

αt
(Kx +K ′x +Ky +K ′y) + βB2t

Now, we set t = (αβ)−1/2, and thus the right hand side becomes√
β

α

(
dx(1− log dx + log(B

√
α/β)) + dy(1− log dy + log(B

√
α/β)) +Kx +K ′x +Ky +K ′y +B2

)
(46)
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Let ε > 0 arbitrary. We want (46) to be lower or equal than ε. For any δ such that 0 < δ < 1/2, there exists
Cδ such that log(x) 6 Cδx

δ. This yields√
β

α

(
dx(1− log

dx
B

+ Cδ(β/α)−δ/2) + dy(1− log
dy
B

+ Cδ(β/α)−δ/2) +Kx +K ′x +Ky +K ′y +B2

)
(47)

If we set β < α, (β/α)−δ/2 > 1 and hence (47) is upper-bounded by(
β

α

) 1−δ
2
(
dx(1− log

dx
B

+ Cδ) + dy(1− log
dy
B

+ Cδ) +Kx +K ′x +Ky +K ′y +B2

)
If we bound this by ε, we obtain the bound in (4).

Corollary 1. Let (Xdx ,Ydy , ldx,dy )
dx∈N,dy∈N

be a family indexed by N2. Assume that νx,0, νy,0 are set to be
the Borel measures in Xdx ,Ydy , that Xdx ,Ydy are locally isometric to the dx, dy-dimensional Euclidean spaces,
and that the volumes of Xdx , Ydy grow no faster than exponentially on the dimensions dx, dy. Assume that
ldx,dy are such that B is constant. Then, we can rewrite (4) as

β

α
6 O

((
ε

(dx + dy) log(B) + dx log(dx) + dy log(dy) +B2

) 2
1−δ
)

Proof. The volume of n-dimensional ball of radius r in n-dimensional Euclidean space is

Vn(r) =
πn/2

Γ(n2 + 1)
Rn,

and hence, if X ,Y are locally isometric to the dx and dy-dimensional Euclidean spaces we can take

Kx = log Γ

(
dx
2

+ 1

)
− dx

2
log(π) 6

(
dx
2

+ 1

)
log

(
dx
2

+ 1

)
− dx

2
log(π) 6 O(dx log dx)

Ky = log Γ(
dy
2

+ 1)− n

2
log(π) 6 O(dx log dx)

If the volumes of X ,Y grow no faster than an exponential of the dimensions dx, dy and we take νx,0, νy,0 to
be the Borel measures, we can take K ′x = log(Vol(X )),K ′y = log(Vol(Y)) to be constant with respect to the
dimensions dx, dy.

G Proof of Theorem 5
Throughout the section we will use the techniques shown in §I.5 to deal with SDEs on manifolds. Effectively,
this means that for SDEs we have additional drift terms ĥx or ĥx induced by the geometry of the manifold,
and that we must project the variations of the Brownian motion onto the tangent space.
Define the processes Xn = (X1, . . . , Xn) and Yn = (Y 1, . . . , Y n) such that for all i ∈ {1, . . . , n},

dXi
t =

− 1

n

n∑
j=1

∇x`(Xi
t , Y

j
t ) + ĥx(Xi

t)

 dt+
√

2β−1 ProjT
Xit
X (dW i

t ), Xn,i
0 = ξi ∼ µx,0

dY it =

 1

n

n∑
j=1

∇y`(Xj
t , Y

i
t ) + ĥy(Y it )

 dt+
√

2β−1 ProjT
Y it
Y(dW̄ i

t ), Y n,i0 = ξ̄i ∼ µy,0

(48)

where Wt = (W 1
t , . . . ,W

n
t ), and W̄t = (W̄ 1

t , . . . , W̄
n
t ) are Brownian motions on RnDx and RnDy respectively.

Notice that Xt is valued in Xn ⊆ RnDx and Yt is valued in Yn ⊆ RnDy . (48) can be seen as a system of 2n
interacting particles in which each particle of one player interacts with all the particles of the other one. It
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also corresponds to noisy continuous-time mirror descent on parameter spaces for an augmented game in
which there are n replicas of each player, choosing 1

2‖ · ‖22 for the mirror map.
Now, define X̃ = (X̃1, . . . , X̃n) and Ỹ = (Ỹ 1, . . . , Ỹ n) for all i ∈ {1, . . . , n} let

dX̃i
t =

(
−
∫
Y
∇x`(X̃i

t , y) dµy,t + ĥx(X̃i
t)

)
dt+

√
2β−1 ProjT

X̃it
X (dW i

t ), X̃i
0 = ξi ∼ µx,0, µy,t = Law(Ỹ it )

dỸ it =

(∫
X
∇y`(x, Ỹ it ) dµx,t + ĥy(Ỹ it )

)
dt+

√
2β−1 ProjT

Ỹ it
Y(dW̄ i

t ), Ỹ i0 = ξ̄i ∼ µy,0, µx,t = Law(X̃i
t)

(49)

Lemma 10 (Forward Kolmogorov equation). The laws µx, µy of a solution X̃, Ỹ of (49) with n = 1 (seen as
elements of C([0, T ],P(X )), C([0, T ],P(Y))) are a solution of (6).

Proof. We sketch the derivation for the forward Kolmogorov equation on manifolds. First, we define the
semigroups

P xt ϕx(x) = E[ϕx(X̃t)|X̃0 = x], P yt ϕy(y) = E[ϕy(Ỹt)|Ỹ0 = y],

where X̃, Ỹ are solutions of (49) with n = 1. We obtain that if Lxt ,Lyt are the infinitesimal genera-
tors (i.e., Lxt ϕx(x) = limt→0+

1
t (P

x
t ϕx(x) − ϕx(x))), the backward Kolmogorov equations d

dtP
x
t ϕx(x) =

Lxt P xt ϕx(x), ddtP
y
t ϕy(y) = LytP yt ϕy(y) hold for ϕx, ϕy in the domains of the generators. Since Lxt and P xt

commute for these choices of ϕx, we have d
dtP

x
t ϕx(x) = P xt Lxt ϕx(x), ddtP

y
t ϕy(y) = P yt Lytϕy(y). By integrating

these two equations over the initial measures µx,0, µy,0, we get

d

dt

∫
ϕx(x) dµx,t =

∫
Lxt ϕx(x) dµx,t,

d

dt

∫
ϕy(y) dµy,t =

∫
Lytϕy(y) dµy,t.

We can write an explicit form for Lxt P xt ϕx(x) by using Itô’s lemma on (49):

Lxt ϕx(x) =

(∫
Y
∇x`(x, y) dµy,s ds− ĥx(x)

)
∇xϕx(x) + β−1Tr

((
ProjTxX

)>
Hϕx(x) ProjTxX

)
,

where we use ProjT
X̃it
X to denote its matrix in the canonical basis.

Let {ξk} be a partition of unity for X (i.e. a set of functions such that
∑
k ξk(x) = 1) in which each ξk is

regular enough and supported on a patch of X . We can write

d

dt

∫
X
ϕx(x) dµx,t(x) =

d

dt

∫
X
ϕx(x) dµx,t(x) =

∑
k

d

dt

∫
X
ξk(x)ϕx(x) dµx,t(x) =

∑
k

∫
Lxt (ξk(x)ϕx(x)) dµx,t

Now, let ϕ̃kx(x) = ξk(x)ϕx(x).∫
X
Lxt ϕ̃kx(x) dµx,t =

∫
X

(
∇xVx(µy,s, x)− ĥx(x)

)
∇xϕ̃kx(x) + β−1Tr

((
ProjTxX

)>
Hϕ̃kx(x) ProjTxX

)
dµx,t

Notice that this equation is analogous to (69). We reverse the argument made in §I.5. Using the fact that the
support of ϕ̃kx(x) is contained on some patch of X given by the mapping ψk : URd ⊆ Rd → U ⊆ X ⊆ RD, the
corresponding Fokker-Planck on URd is

d

dt

∫
URd

ϕ̃kx(ψk(q)) d(ψ−1
k )∗µx,t(q) =

∫
URd

∇Vx(µy,s, ψk(q)) · ∇ϕ̃kx(ψk(q)) + β−1∆ϕ̃kx(ψk(q)) d(ψ−1
k )∗µx,t(q),

where the gradients and the Laplacian are in the metric inherited from the embedding (as in §I.5). The
pushforward definition implies

d

dt

∫
X
ϕ̃kx(x) dµx,t(x) =

∫
URd

∇Vx(µy,s, x) · ∇ϕ̃kx(x) + β−1∆ϕ̃kx(x) dµx,t(x),
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By substituting ϕ̃kx(x) = ξk(x)ϕx(x), summing for all k and using
∑
k ξk(x) = 1, we obtain:

d

dt

∫
X
ϕx(x) dµx,t(x) =

∫
X
∇xVx(µy,s, x) · ∇xϕx(x) + β−1∆xϕx(x) dµx,t(x)

which is the same as the first equation in (6). The second equation is obtained analogously.

Let µnx = 1
n

∑n
i=1 δXi be a P(C([0, T ],X ))-valued random element that corresponds to the empirical measure

of a solution Xn of (48). Analogously, let µny = 1
n

∑n
i=1 δY i be a P(C([0, T ],Y))-valued random element

corresponding to the empirical measure of Yn.
Define the 2-Wasserstein distance on P(C([0, T ],X )) as

W2
2 (µ, ν) := inf

π∈Π(µ,ν)

∫
C([0,T ],X )2

d(x, y)2 dπ(x, y)

where d(x, y) = supt∈[0,T ] dX (x(t), y(t)). Define it analogously on P(C([0, T ],Y)).
We restate Theorem 5.

Theorem 5. There exists a solution of the coupled McKean-Vlasov SDEs (49). Pathwise uniqueness and
uniqueness in law hold. Let µx ∈ P(C([0, T ],X )), µy ∈ P(C([0, T ],Y)) be the unique laws of the solutions for
n = 1 (all pairs have the same solutions). Then,

E[W2
2 (µnx , µx) +W2

2 (µny , µy)]
n→∞−−−−→ 0

Theorem 5 can be seen as a law of large numbers. The proof uses a propagation of chaos argument, originally
due to Sznitman [1991] in the context of interacting particle systems. Our argument follows Theorem 3.3 of
Lacker [2018].

G.1 Existence and uniqueness
We prove existence and uniqueness of the system given by

X̃t =

∫ t

0

(
−
∫
Y
∇x`(X̃s, y) dµy,s ds+ ĥx(X̃s)

)
ds+

√
2β−1

∫ t

0

ProjTX̃sX (dWs), X̃0 = ξ ∼ µx,0,

Ỹt =

∫ t

0

(∫
X
∇y`(x, Ỹs) dµx,s + ĥy(Y n,is )

)
ds+

√
2β−1

∫ t

0

ProjTỸsY(dW̄s), Ỹ0 = ξ̄ ∼ µy,0,

µx,t = Law(X̃n
t ), µy,t = Law(Ỹ nt )

(50)

Path-wise uniqueness means that given W, W̄, ξ, ξ̄, two solutions are equal almost surely. Uniqueness in law
means that regardless of the Brownian motion and the initialization random variables chosen (as long as they
are µx,0 and µy,0-distributed), the law of the solution is unique. We prove that both hold for (50).
We have that for all x, x′ ∈ X , µ, ν ∈ P(Y),∣∣∣∣ ∫ ∇x`(x, y) dµ−

∫
∇x`(x′, y) dν

∣∣∣∣ 6 L(d(x, x′) +W2(µ, ν)) (51)

This is obtained by adding and subtracting the term
∫
∇x`(x′y) dµ, by using the triangle inequality and the

inequality W1(µ, ν)) 6W2(µ, ν)) (which is proven using the Cauchy-Schwarz inequality). Hence,∣∣∣∣ ∫ ∇x`(x, y) dµ−
∫
∇x`(x′, y) dν

∣∣∣∣2 6 2L2(d(x, x′)2 +W2
2 (µ, ν)) (52)

On the other hand, using the regularity of the manifold, there exists LX such that

|ĥx(x)− ĥx(x′)| 6 LXd(x, x′),

|ProjTxX − ProjTx′X | 6 LXd(x, x′)
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where ProjTxX denotes its matrix in the canonical basis and the norm in the second line is the Frobenius
norm. Also, let ‖x− x′‖ be the Euclidean norm of X in RDx (the Euclidean space where X is embedded) and
let KX > 1 be such that d(x, x′) 6 KX ‖x− x′‖.
Let µy, νy ∈ P(C([0, T ],X )) and let Xµy , Xνy be the solutions of the first equation of (50) when we plug µy
(νy resp.) as the measure for the other player. Xµy and Xνy exist and are unique by the classical theory of
SDEs (see Chapter 18 of Kallenberg [2002]). Following the procedure in Theorem 3.3 of Lacker [2018], we
obtain

E[‖Xµy −Xνy‖2t ] 6 3tE
[ ∫ t

0

∣∣∣∣ ∫ ∇x`(Xµy , y) dµy,r −
∫
∇x`(Xνy , y) dνy,r

∣∣∣∣2 dr]
+ 3tE

[ ∫ t

0

|ĥx(Xµy )− ĥx(Xνy )|2 dr
]

+ 12E
[ ∫ t

0

|ProjTxX − ProjTx′X |
2 dr

]
6 3(3t+ 4)L̃2E

[ ∫ t

0

(‖Xµy −Xνy‖2r +W2
2 (µy,r, νy,r)) dr

]
,

(53)

where L̃2 = (L2 + L2
X )K2

X . Using Fubini’s theorem and Gronwall’s inequality, we obtain

E[‖Xµy −Xνy‖2t ] 6 3(3T + 4)L̃2 exp(3(3T + 4)L̃2)

∫ t

0

W2
2 (µy,r, νy,r)) dr (54)

Let CT := 3(3T + 4)L̃2 exp(3(3T + 4)L̃2). For µ, ν ∈ P(C([0, T ],X )), define

W2
2,t(µ, ν) := inf

π∈Π(µ,ν)

∫
C([0,T ],X )2

sup
r∈[0,t]

d(x(r), y(r)) π(dx, dy)

Hence, (54) and the bound W2
2 (µy,r, νy,r) 6W2

2,r(µy, νy) yield

E[‖Xµy −Xνy‖2t ] 6 CT

∫ t

0

W2
2,r(µy, νy) dr

Reasoning analogously for the other player, we obtain

E[‖Xµy −Xνy‖2t + ‖Y µx − Y νx‖2t ] 6 CT

∫ t

0

W2
2,r(µy, νy) dr + CT

∫ t

0

W2
2,r(µx, νx) dr

Given µy ∈ P(C([0, T ],Y)), define Φx(µy) = Law(Xµy ) ∈ P(C([0, T ],X )), and define Φy analogously. Notice
that W2

2,t(Φx(µy),Φx(νy)) 6 E[‖Xµy −Xνy‖2t ],W2
2,t(Φy(µx),Φy(νx)) 6 E[‖Xµx −Xνx‖2t ]. Hence, we obtain

W2
2,t(Φx(µy),Φx(νy)) +W2

2,t(Φy(µx),Φy(νx)) 6 CT

∫ t

0

W2
2,r(µy, νy) +W2

2,r(µx, νx) dr

Observe that W2
2,t(µx, νx) + W2

2,t(µy, νy) is the square of a distance between (µx, µy) and (νx, νy) on
P(C([0, T ],X ))×P(C([0, T ],Y)). Hence, we can apply the Piccard iteration argument to obtain the existence
result and another application of Gronwall’s inequality yields pathwise uniqueness.
Uniqueness in law (i.e., regardless of the specific Brownian motions and initialization random variables) follows
from the typical uniqueness in law result for SDEs (see Chapter 18 of Kallenberg [2002] for example). The idea
is that when we solve the SDEs with W ′, W̄ ′, ξ′, ξ̄′ plugging in the drift the laws of a solution for W, W̄, ξ, ξ̄,
the solution has the same laws by uniqueness in law of SDEs. Hence, that new solution solves the coupled
McKean-Vlasov for W ′, W̄ ′, ξ′, ξ̄′.

G.2 Propagation of chaos
Let µnx = 1

n

∑n
i=1 δXi , µ

n
y = 1

n

∑n
i=1 δY i . Using the argument from existence and uniqueness on the i-th

components of X, X̃,

E[‖Xi − X̃i‖2t ] 6 3(3T + 4)L̃2E
[ ∫ t

0

(‖Xi − X̃i‖2r +W2
2 (µny,r, µy,r)) dr

]
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Arguing as before, we obtain

E[‖Xi − X̃i‖2t ] 6 CTE
[ ∫ t

0

W2
2,r(µ

n
y , µy) dr

]
Let νnx = 1

n

∑n
i=1 δX̃i be the empirical measure of the mean field processes in (49). Notice that 1

n

∑n
i=1 δ(Xi,X̃i)

is a coupling between νnx and µnx , and so

W2
2,t(µ

n
x , ν

n
x ) 6

1

n

n∑
i=1

‖Xi − X̃i‖2t

Thus, we obtain

E[W2
2,t(µ

n
x , ν

n
x )] 6 CTE

[ ∫ t

0

W2
2,r(µ

n
y , µy) dr

]
We use the triangle inequality

E[W2
2,t(µ

n
x , µx)] 6 2E[W2

2,t(µ
n
x , ν

n
x )] + 2E[W2

2,t(ν
n
x , µx)]

6 2CTE
[ ∫ t

0

W2
2,r(µ

n
y , µy) dr

]
+ 2E[W2

2,t(ν
n
x , µx)]

At this point we follow an analogous procedure for the other player and we end up with

E[W2
2,t(µ

n
x , µx) +W2

2,t(µ
n
y , µy)] 6 2CTE

[ ∫ t

0

W2
2,r(µ

n
y , µy) +W2

2,r(µ
n
x , µx) dr

]
+ 2E[W2

2,t(ν
n
x , µx) +W2

2,t(ν
n
y , µy)]

We use Fubini’s theorem and Gronwall’s inequality again.

E[W2
2,t(µ

n
x , µx) +W2

2,t(µ
n
y , µy)] 6 2 exp(2CTT )E[W2

2,t(ν
n
x , µx) +W2

2,t(ν
n
y , µy)]

If we set t = T we get

E[W2
2 (µnx , µx) +W2

2 (µny , µy)] 6 2 exp(2CTT )E[W2
2 (νnx , µx) +W2

2 (νny , µy)]

and the factor E[W2
2 (νnx , µx) +W2

2 (νny , µy)] goes to 0 as n→∞ by the law of large numbers (see Corollary
2.14 of [Lacker, 2018]).

G.3 Convergence of the Nikaido-Isoda error
Corollary 2. For t ∈ [0, T ], if µnx,t, µx,t, µny,t, µy,t are the marginals of µnx , µx, µny , µy at time t, we have

E[|NI(µnx,t, µny,t)−NI(µx,t, µy,t)|] n→∞−−−−→ 0

Proof. See Lemma 3.
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H Proof of Theorem 6
Define the processes X = (X1, . . . , Xn),wx = (w1

x, . . . , w
n
x) and Y = (Y 1, . . . , Y n),wy = (w1

y, . . . , w
n
y ) such

that for all i ∈ {1, . . . , n}

dXi
t

dt
= −γ 1

n

n∑
j=1

wjy,t∇x`(Xi
t , Y

j
t ), Xi

0 = ξi ∼ νx,0

dwix,t
dt

= α

− 1

n

n∑
j=1

wjy,t`(X
i
t , Y

j
t ) +

1

n2

n∑
k=1

n∑
j=1

wjy,tw
k
x,t`(X

i
t , Y

j
t )

wix,t, wix,0 = 1

dY it
dt

= γ
1

n

n∑
j=1

wjx,t∇y`(Xj
t , Y

i
t ), Y i0 = ξ̄i ∼ νy,0

dwiy,t
dt

= α

 1

n

n∑
j=1

wjx,t`(X
i
t , Y

j
t )− 1

n2

n∑
k=1

n∑
j=1

wjy,tw
k
x,t`(X

i
t , Y

j
t )

wix,t, wiy,0 = 1

(55)

Let µnx,t = 1
n

∑n
i=1 δ(Xit ,wix,t) ∈ P(X ×R+), µny,t = 1

n

∑n
i=1 δ(Y it ,r

n,i
y,t )
∈ P(Y×R+). Let νnx,t = 1

n

∑n
i=1 w

i
x,tδXit ∈

P(X ), νny,t = 1
n

∑n
i=1 w

i
y,tδY it ∈ P(Y) be the projections of µnx,t, µny,t.

Let hx, hy be the projection operators, i.e. hxµx =
∫
R+ wxµx(·, wx). We also define the mean field processes

X̃, Ỹ, w̃x, w̃y given component-wise by

dX̃i
t

dt
= −γ∇x

∫
`(X̃i

t , y)dνy,t, X̃i
0 = ξi ∼ νx,0

dw̃ix,t
dt

= α

(
−
∫
`(X̃i

t , y)dνy,t + L(νx,t, νy,t)

)
w̃ix,t, w̃ix,0 = 1

dỸ it
dt

= γ∇y
∫
`(x, Ỹ it )dνx,t, Ỹ i0 = ξ̄i ∼ νy,0

dw̃iy,t
dt

= α

(∫
`(x, Ỹ it )dνx,t − L(νx,t, νy,t)

)
w̃ix,t, w̃iy,0 = 1

νx,t = hxLaw(X̃i
t , w̃

i
x,t), νy,t = hyLaw(Ỹ it , w̃

i
y,t)

(56)

for i between 1 and n.

Lemma 11 (Forward Kolmogorov equation). If X̃, w̃x, Ỹ, w̃y is a solution of (56) with n = 1, then its laws
µx, µy fulfill (14).

Proof. Let ψx : X × R+ → R. Plug the laws µx, µy of the solution (X̃, w̃x), (Ỹ, w̃y) into the ODE (56). Let
Φx,t = (XΦ

x,t, w
Φ
x,t) : (X ×R+)→ (X ×R+) denote the flow that maps an initial condition of the ODE (56) to

the corresponding solution at time t. Then, we can write µx,t = (Φx,t)∗µx,0, where (Φx,t)∗ is the pushforward.
Hence,

d

dt

∫
X×R+

ψx(x,wx) dµx,t(x,wx) =
d

dt

∫
X×R+

ψx(Φx,t(x,wx)) dµx,0(x,wx)

=

∫
X×R+

(
∇xψx(Φx,t(x,wx)),

dψx
dwx

(Φx,t(x,wx))

)
· d
dt

Φx,t(x,wx) dµx,0(x,wx)

=

∫
X×R+

∇xψx(Φx,t(x,wx)) · (−γ∇xVx(hyµy,t, X
Φ
x,t))

+
dψx
dwx

(Φx,t(x,wx))α(−Vx(hyµy,t, X
Φ
x,t) + L(hxµx,t, hyνy,t)) dµx,0(x,wx)

And we can identify the right hand side as the weak form of (14), shown in (16). The argument for µy is
analogous.
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We restate Theorem 6.

Theorem 6. There exists a solution of the coupled SDEs (56). Pathwise uniqueness and uniqueness in law
hold. Let µx ∈ P(C([0, T ],X × R+)), µy ∈ P(C([0, T ],Y × R+)) be the unique laws of the solutions for n = 1
(all pairs have the same solutions). Then,

E[W2
2 (µnx , µx) +W2

2 (µny , µy)]
n→∞−−−−→ 0

Theorem 6 is the law of large numbers for the WFR dynamics, and its proof follows the same argument of
Theorem 5.

H.1 Existence and uniqueness
We choose to do an argument close to Sznitman [1991] (see Lacker [2018]), which yields convergence of the
expectation of the square of the 2-Wasserstein distances between the empirical and the mean field measures.
First, to prove existence and uniqueness of the solution (νx,t, νy,t) in the time interval [0, T ] for arbitrary T ,
we can use the same argument as in the App. G. Now, instead of (50) we have

X̃t = ξ − γ
∫ t

0

∫
Y
∇x`(X̃s, y) dνy,s ds,

w̃x,t = 1 + α

∫ t

0

(
−
∫
`(X̃t, y)dνy,t + L(νx,t, νy,t)

)
w̃x,s ds,

Ỹt = ξ̄ + γ

∫ t

0

∫
X
∇y`(x, Ỹs) dνx,s ds,

w̃y,t = 1 + α

∫ t

0

(∫
`(x, Ỹt)dνx,t − L(νx,t, νy,t)

)
w̃y,s ds,

νx,t = hxLaw(X̃t, w̃x,t), νy,t = hyLaw(Ỹt, w̃y,t),

where ξ and ξ̄ are arbitrary random variables with laws νx,0, νy,0 respectively. For x, x′ ∈ X , r, r′ ∈ R+,
νx, ν

′
x ∈ P(X ), νy, ν′y ∈ P(Y), notice that using an argument similar to (51) the following bound holds∣∣∣∣ (−∫ `(x, y)dνy + L(νx, νy)

)
w −

(
−
∫
`(x′, y)dν′y + L(ν′x, ν

′
y)

)
w′
∣∣∣∣

6 2M |w − w′|+ |w′|L̃(|x− x′|+ 3W1(µ, ν)) 6 2M |w − w′|+ |w′|L̃(|x− x′|+ 3W2(νy, ν
′
y))

=⇒
∣∣∣∣ (−∫ `(x, y)dνy + L(νx, νy)

)
r −

(
−
∫
`(x′, y)dν′y + L(ν′x, ν

′
y)

)
r′
∣∣∣∣2

6 12M2|w − w′|2 + 3|w′|2L̃2(|x− x′|2 + 9W2
2 (νy, ν

′
y))

Recall that M is a bound on the absolute value of ` and L̃ is the Lipschitz constant of the loss `. A simple
application of Gronwall’s inequality shows |w̃x,t| is bounded by e2MT for all t ∈ [0, T ]. Hence, we can write

E[‖Xνy −Xν′y‖2t + ‖wνyx − w
ν′y
x ‖2t ] 6 γ2tE

[ ∫ t

0

∣∣∣∣∇x ∫ `(Xνy
s , y)dνy,s −∇x

∫
`(X

ν′y
s , y)dν′y,s

∣∣∣∣2 ds]
+α2tE

[ ∫ t

0

∣∣∣∣ (−∫ `(Xνy
s , y)dνy + L(νx, νy)

)
wνyx −

(
−
∫
`(X

ν′y
s , y)dν′y + L(ν′x, ν

′
y)

)
w
ν′y
x

∣∣∣∣2 ds]
6 KtE

[ ∫ t

0

‖Xνy −Xν′y‖2s + ‖wνy − wν′y‖2s ds
]

+K ′tE
[ ∫ t

0

W2
2 (νy,s, ν

′
y,s) ds

]
,

where K = max{12α2M2, 2L2γ2 + 3L̃2e4MTα2},K ′ = 2L2γ2 + 27L̃2e4MTα2. Notice that we have used (52)
as well. This equation is analogous to equation (53), and upon application of Fubini’s theorem and Gronwall’s
inequality it yields

E[‖Xνy −Xν′y‖2t + ‖wνyx − w
ν′y
x ‖2t ] 6 TK ′ exp(TK)E

[ ∫ t

0

W2
2 (νy,s, ν

′
y,s) ds

]
(57)
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Now we will prove that

W2
2 (hxµx, hxµ

′
x) 6 e4MTW2

2 (µx, µ
′
x), (58)

where µx, µ′x ∈ P(X × [0, e2MT ]). Define the homogeneous projection operator h̃ : P((X ×R+)2)→ P(X 2) as∫
X 2

f(x, y) d(h̃π)(x, y) =

∫
(X×[0,e2MT ])2

wxwyf(x, y) dπ(x,wx, y, wy), ∀π ∈ P((X × R+)2),∀f ∈ C(X 2).

Let π be a coupling between hxµx, hxµ′x. Then h̃π is a coupling between hxµx, hxµ′x and∫
X 2

‖x− y‖2 d(h̃π)(x, y) =

∫
(X×[0,e2MT ])2

wxwy‖x− y‖2 dπ(x,wx, y, wy)

6 e4MT

∫
(X×[0,e2MT ])2

‖x− y‖2 dπ(x,wx, y, wy)

6 e4MT

∫
(X×[0,e2MT ])2

‖x− y‖2 + |wx − wy|2 dπ′(x,wx, y, wy)

Taking the infimum with respect to π on both sides we obtain the desired inequality.
Let µx,t = Law(X

νy
t , w

νy
x,t), µ

′
x,t = Law(X

ν′y
t , w

ν′y
x,t) and recall that νx,t = hxµx,t, ν

′
x,t = hxµ

′
x,t. Given

µy ∈ P(C([0, T ],Y × R+)), define Φx(µy) = Law(Xµy , w
µy
x ) ∈ P(C([0, T ],X )) where we abuse the notation

and use (Xµy , w
µy
x ) to refer to (Xνy , w

νy
x ). Notice also that

W2
2,t(Φx(µy),Φx(µ′y)) 6 E

[
sup
s∈[0,t]

‖Xνy
s −X

ν′y
s ‖2 + ‖wνyx,s − w

ν′y
x,s‖2

]
6 E[‖Xνy −Xν′y‖2t + ‖wνyx − w

ν′y
x ‖2t ](59)

We use (58) and (59) on (57) to conclude

W2
2,t(Φx(µy),Φx(µ′y)) 6 TK ′ exp(TK)E

[ ∫ t

0

W2
2,s(µy, µ

′
y) ds

]
The rest of the argument is sketched in App. G.

H.2 Propagation of chaos
Following the reasoning in the existence and uniqueness proof, we can write

E[‖Xi − X̃i‖2t + ‖wix − w̃ix‖2t ]

6 KtE
[ ∫ t

0

‖Xi − X̃i‖2s + ‖wix − w̃ix‖2s ds
]

+K ′tE
[ ∫ t

0

W2
2 (νny,s, νy,s) ds

]
,

Hence, we obtain

E[‖Xi − X̃i‖2t + ‖wix − w̃ix‖2t ] 6 TK ′ exp(TK)E
[ ∫ t

0

W2
2 (νny,s, νy,s) ds

]
Let µ̃nx,t = 1

n

∑n
i=1 δ(X̃it ,w̃it)

∈ P(X × R+) be the marginal at time t of the empirical measure of (55). As in
App. G,

W2
2,t(µ

n
x , µ̃

n
x) 6

1

n

n∑
i=1

sup
s∈[0,t]

‖Xi
s − X̃i

s‖2 + |wix,s − w̃ix,s|2 6
1

n

n∑
i=1

‖Xi − X̃i‖2t + ‖wix − w̃ix‖2t

which yields

E[W2
2,t(µ

n
x , µ̃

n
x)] 6 TK ′ exp(TK)E

[ ∫ t

0

W2
2 (νny,s, νy,s) ds

]
6 TK ′ exp((K + 4M)T )E

[ ∫ t

0

W2
2,s(µ

n
y , µy) ds

]
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The second inequality above follows from inequality (58) W2
2 (µny,s, µy,s) 6 W2

2,s(µ
n
y , µy). Now we use the

triangle inequality as in App. G:

E[W2
2,t(µ

n
x , µx)] 6 2E[W2

2,t(µ
n
x , µ̃

n
x)] + 2E[W2

2,t(µ̃
n
x , µx)]

6 2TK ′ exp((K + 4M)T )E
[ ∫ t

0

W2
2,s(µ

n
y , µy) ds

]
+ 2E[W2

2,t(µ̃
n
x , µx)]

If we denote C := 2TK ′ exp((K + 4M)T ) and we make the same developments for the other player, we obtain

E[W2
2,t(µ

n
x , µx) +W2

2,t(µ
n
y , µy)] 6 CE

[ ∫ t

0

W2
2,s(µ

n
y , µy) +W2

2,s(µ
n
x , µx) ds

]
+ 2E[W2

2,t(µ̃
n
x , µx) +W2

2,t(µ̃
n
y , µy)]

From this point on, the proof works as in App. G.

H.3 Convergence of the Nikaido-Isoda error

Corollary 3. For t ∈ [0, T ], let ν̄nx,t =
∫ t

0
hxµ

n
x,r dr, ν̄x,t =

∫ t
0
hxµx,r dr and define ν̄ny,t, ν̄y,t analogously.

Then,
E[|NI(ν̄nx,t, ν̄ny,t)−NI(ν̄x,t, ν̄y,t)|] n→∞−−−−→ 0

Proof. Notice that since the integral over time and the homogeneous projection commute, we have ν̄nx,t =

hx( 1
t

∫ t
0
µnx,r dr), ν̄x,t = hx( 1

t

∫ t
0
µx,r dr). Since 1

t

∫ t
0
µnx,r dr and 1

t

∫ t
0
µx,r dr belong to P(X × [0, e2MT ]), (58)

implies

W2
2

(
hx

(
1

t

∫ t

0

µnx,r dr

)
, hx

(
1

t

∫ t

0

µx,r dr

))
6 e4MTW2

2

(
1

t

∫ t

0

µnx,r dr,
1

t

∫ t

0

µx,r dr

)
Notice that W2

2 ( 1
t

∫ t
0
µnx,r dr,

1
t

∫ t
0
µx,r dr) 6 1

t

∫ t
0
W2

2 (µnx,r, µx,r) dr. Indeed,

W2
2

(
1

t

∫ t

0

µnx,r dr,
1

t

∫ t

0

µx,r dr

)
= max
ϕ∈Ψc(X )

1

t

∫ t

0

∫
ϕ dµnx,r dr +

1

t

∫ t

0

∫
ϕc dµnx,r dr

6
1

t

∫ t

0

(
max

ϕ∈Ψc(X )

∫
ϕ dµnx,r +

∫
ϕc dµnx,r

)
dr =

1

t

∫ t

0

W2
2 (µnx,r, µx,r) dr

Hence, using the inequality W2
2 (µnx,r, µx,r) 6W2

2 (µnx , µx):

E
[
W2

2

(
hx

(
1

t

∫ t

0

µnx,r dr

)
, hx

(
1

t

∫ t

0

µx,r dr

))]
6 e4MTE

[
1

t

∫ t

0

W2
2 (µnx,r, µx,r) dr

]
6 e4MTE[W2

2 (µnx , µx)]

Since the right hand side goes to zero as n→∞ by Theorem 6, we conclude by applying Lemma 3.

H.4 Hint of the infinitesimal generator approach
Let ϕx : X → R, ϕy : Y → R be arbitrary continuously differentiable functions, i.e. ϕx ∈ C1(X ,R), ϕy ∈
C1(Y,R). Let us define the operators L(n)

x,t : C1(X ,R)→ C0(X ,R),L(n)
y,t : C1(Y,R)→ C0(Y,R) as

L(n)
x,tϕx(x) = −γ∇x

∫
`(x, y)dνny,t · ∇xϕx(x) + α

(
−
∫
`(x, y)dνny,t + L(νnx,t, ν

n
y,t)

)
L(n)
y,t ϕy(y) = γ∇y

∫
`(x, y)dνnx,t · ∇yϕy(x) + α

(∫
`(x, y)dνnx,t − L(νnx,t, ν

n
y,t)

) (60)

37



Notice that from (55) and (60), we have

d

dt

∫
X
ϕx(x) dνnx,t(x) =

d

dt

∫
X×R+

wxϕx(x) dµnx,t(x,wx) =
d

dt

n∑
i=1

wix,tϕx(Xi
t)

=

n∑
i=1

dwix,t
dt

ϕx(Xi
t) +

n∑
i=1

wix,t∇xϕx(Xi
t) ·

dXi
t

dt

=

∫
X×R+

wxL(n)
x,tϕx(x) dµnx,t(x,wx) =

∫
X
L(n)
x,tϕx(x) dνnx,t(x)

(61)

The analogous equation holds for νnx,t:

d

dt

∫
Y
ϕy(y) dνny,t(y) =

∫
Y
L(n)
y,t ϕy(y) dνny,t(y) (62)

Formally taking the limit n→∞ on (61) and (62) yields

d

dt

∫
X
ϕx(x) dνx,t(x) =

∫
X
Lx,tϕx(x) dνx,t(x)

d

dt

∫
Y
ϕy(y) dνy,t(y) =

∫
Y
Ly,tϕy(y) dνy,t(y),

where

Lx,tϕx(x) = −γ∇x
∫
`(x, y)dνy,t · ∇xϕx(x) + α

(
−
∫
`(x, y)dνy,t + L(νx,t, νy,t)

)
Ly,tϕy(y) = γ∇y

∫
`(x, y)dνx,t · ∇yϕy(x) + α

(∫
`(x, y)dνx,t − L(νx,t, νy,t)

)
and νx,0, νy,0 are set as in (55).
To make the limit n→∞ rigorous, an argument analogous to Theorem 2.6 of Chizat and Bach [2018] would
result in almost sure convergence of the 2-Wasserstein distances between the empirical and the mean field
measures. In our case almost sure convergence of the squared distance implies convergence of the expectation
of the squared distance through dominated convergence, and hence the almost sure convergence result is
stronger. Nonetheless, such an argument would require proving uniqueness of the mean field measure PDE
through some notion of geodesic convexity, which is not clear in our case.
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I Auxiliary material

I.1 ε-Nash equilibria and the Nikaido-Isoda error
Recall that an ε-NE (µx, µy) satisfies ∀µ∗x ∈ P(X ), L(µx, µy) 6 L(µ∗x, µy) + ε and ∀µ∗y ∈ P(Y), L(µx, µy) >
L(µx, µ

∗
y) − ε. That is, each player can improve its value by at most ε by deviating from the equilibrium

strategy, supposing that the other player is kept fixed.
Recall the Nikaido-Isoda error defined in (2). This equation can be rewritten as:

NI(µx, µy) = sup
µ∗y∈P(Y)

L(µx, µ
∗
y)− L(µx, µy) + L(µx, µy)− inf

µ∗x∈P(X )
L(µ∗x, µy) .

The terms supµ∗y∈P(Y) L(µx, µ
∗
y)−L(µx, µy) > 0 measure how much player y can improve its value by deviating

from µy while µx stays fixed. Analogously, the terms L(µx, µy)− infµ∗x∈P(X ) L(µ∗x, µy) > 0 measure how much
player x can improve its value by deviating from µx while µy stays fixed.
Notice that

∀µ∗x ∈ P(X ), L(µx, µy) 6 L(µ∗x, µy) + ε ⇐⇒ L(µx, µy)− inf
µ∗x∈P(X )

L(µ∗x, µy) 6 ε

∀µ∗y ∈ P(Y), L(µx, µy) > L(µx, µ
∗
y)− ε ⇐⇒ sup

µ∗y∈P(Y)

L(µx, µ
∗
y)− L(µx, µy) 6 ε

Thus, an ε-Nash equilibrium (µx, µy) fulfills NI(µx, µy) 6 2ε, and any pair (µx, µy) such that NI(µx, µy) 6 ε
is an ε-Nash equilibrium.

I.2 Example: failure of the Interacting Wasserstein Gradient Flow
Let us consider the polynomial f(x) = 5x4 + 10x2 − 2x, which is an asymmetric double well as shown in
Fig. 4.

−1.5 −1 −0.5 0 0.5 1 1.5

−5

0

5

x

f
(x

)
=

5x
4
−

10
x

2
−

2x

Figure 4: Plot of the function f(x) = 5x4 + 10x2 − 2x.

Let us define the loss ` : R×R→ R as `(x, y) = f(x)− f(y). That is, the two players are non-interacting and
hence we obtain Vx(x, µy) = f(x) +K, Vy(y, µx) = −f(y) +K ′. This means that the IWGF in equation (4)
becomes two independent Wasserstein Gradient Flows

∂tµx = ∇ · (µxf ′(x)), µx(0) = µx,0,

∂tµy = −∇ · (µyf ′(y)), µy(0) = µy,0.
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The particle flows in (3) become
dxi
dt

= −f ′(xi),
dyi
dt

= f ′(yi).

That is, the particles of player x follow the gradient flow of f and the particles of player y follow the gradient
flow of −f . It is clear from Fig. 4 that if the initializations x0,i, y0,i are on the left of the barrier, they will not
end up in the global minimum f (resp., the global maximum of −f). And in this case, the pair of measures
supported on the global minimum of f is the only (pure) Nash equilibrium.
The game given by ` does not fall exactly in the framework that we describe in this work because ` is not
defined on compact spaces. However, it is easy to construct very similar continuously differentiable functions
on compact spaces that display the same behavior.

I.3 Link between Interacting Wasserstein Gradient Flow and interacting parti-
cle gradient flows

Recall (3):
dxi
dt

= − 1

n

n∑
j=1

∇x`(xi, yj),
dyi
dt

=
1

n

n∑
j=1

∇x`(xj , yi).

Let Φt = (Φx,t,Φy,t) : Xn × Yn → Xn × Yn be the flow mapping initial conditions X0 = (xi,0)i∈[1:n],Y0 =

(yi,0)i∈[1:n] to the solution of (3). Let µnx,t = 1
n

∑n
i=1 δΦ(i)

x,t(X0,Y0)
, µny,t = 1

n

∑n
i=1 δΦ(i)

y,t(X0,Y0)
. For all ψx ∈

C(X ),

d

dt

∫
X
ψx(x) dµnx,t(x) =

1

n

n∑
i=1

d

dt
ψx(Φ

(i)
x,t(X0,Y0))

=
1

n

n∑
i=1

∇xψx(Φ
(i)
x,t(X0,Y0)) ·

− 1

n

n∑
j=1

∇x`(Φ(i)
x,t(X0,Y0),Φ

(j)
y,t(X0,Y0))


=

1

n

n∑
i=1

∇xψx(Φ
(i)
x,t(X0,Y0)) · ∇xVx(µny,t,Φ

(i)
x,t(X0,Y0))

=

∫
X
∇xψx(x) · ∇xVx(µny,t, x) dµnx,t(x),

which is the first line of (4). The second line follows analogously.

I.4 Minimax problems and Stackelberg equilibria
Several machine learning problems, including GANs, are framed as a minimax problem

min
x∈X

max
y∈Y

`(x, y).

A minimax point (also known as a Stackelberg equilibrium or sequential equilibrium) is a pair (x̃, ỹ) at which
the minimum and maximum of the problem are attained, i.e.{

minx∈X maxy∈Y `(x, y) = maxy∈Y `(x̃, y)

maxy∈Y `(x̃, y) = `(x̃, ỹ)
.

We consider the lifted version of the minimax problem (I.4) in the space of probability measures.

min
µx∈P(X )

max
µy∈P(Y)

L(µx, µy). (63)

By the generalized Von Neumann’s minimax theorem, a Nash equilibrium of the game (1) is a solution of the
lifted minimax problem (63) (see Lemma 12 in the case ε = 0).
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The converse is not true: minimax points (solutions of (63)) are not necessarily mixed Nash equilibria
even in the case where the loss function is convex-concave. An example is L : R × R → R given by
L(µx, µy) =

∫∫
(x2 + 2xy) dµx dµy. LetM be the set of measures µ ∈ P(R) such that

∫
x dµ = 0. Notice

that any pair (δ0, µy) with µy ∈ P(R) is a minimax point. That is because

max
µy∈P(R)

L(µx, µy) =


+∞ if µx /∈M
positive if µx ∈M \ {δ0}
0 if µx = δ0,

and hence δ0 = argminµx∈P(R) maxµy∈P(R) L(µx, µy). But if µx = δ0, we have argmaxµy∈P(R) L(µx, µy) =
P(R), because for all measures µy ∈ P(R), L(δ0, µy) = 0. However, for µy /∈ M, L(µx, µy) as a function of
µx does not have a minimum at δ0, but at δ− ∫

y dµy . Hence, the only mixed Nash equilibria are of the form
(δ0, µy), with µy ∈M.
The intuition behind the counterexample is that minimax points only require the minimizing player to be
non-exploitable, but the maximizing player is only subject to a weaker condition.
We define a ε-minimax point (or ε-Stackelberg equilibrium) of an objective L(µx, µy) as a couple (µ̃x, µ̃y)
such that {

minµx∈P(X ) maxµy∈P(Y) L(µx, µy) > maxµy∈P(Y) L(µ̃x, µy)− ε
maxµy∈P(Y) L(µ̃x, µy) 6 L(µ̃x, µ̃y) + ε

.

Lemma 12. An ε-Nash equilibrium is a 2ε-minimax point, and it holds that

min
µx∈P(X )

max
µy∈P(Y)

L(µx, µy)− ε 6 L(µ̂x, µ̂y) 6 max
µy∈P(Y)

min
µx∈P(X )

L(µx, µ̂y) + ε

Proof. Let (µ̂x, µ̂y) be an ε-Nash equilibrium. Notice that maxµy∈P(Y) minµx∈P(X ) L(µ̃x, µy) 6 minµx∈P(X ) maxµy∈P(Y) L(µ̃x, µy).
Also,

min
µx∈P(X )

max
µy∈P(Y)

L(µx, µy) 6 max
µy∈P(Y)

L(µ̂x, µy) 6 L(µ̂x, µ̂y) + ε 6 min
µx∈P(X )

L(µx, µ̂y) + 2ε

6 max
µy∈P(Y)

min
µx∈P(X )

L(µx, µ̂y) + 2ε
(64)

and this yields the chain of inequalities in the statement of the theorem. The condition maxµy∈P(Y) L(µ̃x, µy) 6
L(µ̃x, µ̃y) + ε of the definition of ε-minimax point follows directly from the definition of an ε-Nash equilibrium.
Using part of (64), we get

max
µy∈P(Y)

L(µ̂x, µy)− 2ε 6 max
µy∈P(Y)

min
µx∈P(X )

L(µx, µ̂y) 6 min
µx∈P(X )

max
µy∈P(Y)

L(µ̃x, µy),

which is the first condition of a 2ε-minimax.

Lemma 12 provides the link between approximate Nash equilibria and approximate Stackelberg equilibria,
and it allows to translate our convergence results into minimax problems such as GANs.

I.5 Itô SDEs on Riemannian manifolds: a parametric approach
We provide a brief summary on how to deal with SDEs on Riemannian manifolds and their corresponding
Fokker-Planck equations (see Chapter 8 of Chirikjian [2009]). While ODEs have a straightforward translation
into manifolds, the same is not true for SDEs. Recall that the definitions of the gradient and divergence for
Riemannian manifolds are

∇ ·X = |g|−1/2∂i(|g|1/2Xi), (∇f)i = gij∂jf,

where gij is the metric tensor, gij = (gij)
−1 and |g| = det(gij). We use the Einstein convention for summing

repeated indices.
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The parametric approach to SDEs in manifolds is to define the SDE for the variables q = (q1, · · · , qd) of a
patch of the manifold:

dq = h(q, t)dt+H(q, t)dw. (65)

The corresponding forward Kolmogorov equation is

∂f

∂t
+ |g|−1/2

d∑
i=1

∂

∂qi

(
|g|1/2hif

)
=

1

2
|g|−1/2

d∑
i,j=1

∂2

∂qi∂qj

(
|g|1/2

D∑
k=1

HikH
>
kjf

)
, (66)

which is to be understood in the weak form.
Assume that the manifold M embedded in RD. If ϕ : URd ⊆ Rd → U ⊆ M ⊆ RD is the mapping
corresponding to the patch U and (65) is defined on URd , let us set H(q) = (Dϕ(q))−1. In this case,∑
kHikH

>
kj =

∑
k(Dϕ)−1

ik ((Dϕ)−1
kj )> = gij(q). Hence, the right hand side of (66) becomes

1

2
|g|−1/2

d∑
i,j=1

∂2

∂qi∂qj

(
|g|1/2gijf

)
= |g|−1/2

d∑
i=1

∂

∂qi

(
|g|1/2h̃if

)
+

1

2
|g|−1/2

d∑
i,j=1

∂

∂qi

(
|g|1/2gij ∂

∂qj
f

)

= |g|−1/2
d∑
i=1

∂

∂qi

(
|g|1/2h̃if

)
+

1

2
|g|−1/2

d∑
i,j=1

∂

∂qi

(
|g|1/2gij ∂

∂qj
f

)
= ∇ · (h̃f) +

1

2
∇ · ∇f

where

h̃i(q) =
1

2

d∑
j=1

(
|g(q)|−1/2gij(q)

∂|G(q)|1/2
∂qj

+
∂gij(q)

∂qj

)
Hence, we can rewrite (66) as

∂f

∂t
= ∇ · ((−h + h̃)f) +

1

2
∇ · ∇f

For this equation to be a Fokker-Planck equation with potential E (i.e. with a Gibbs equilibrium solution),
we need −h + h̃ = ∇E, which implies h = −∇E + h̃.
We can convert an SDE in parametric form like (65) into an SDE on RD by using Ito’s lemma on X = ϕ(q):

dXi = dϕi(q) =

(
Dϕi(q)h(q) +

1

2
Tr(H(q, t)>(Hϕi)(q)H(q, t))

)
dt+Dϕi(q)H(q, t)dw (67)

If we setH(q) = (Dϕ(q))−1 as before,Dϕ(q)H(q, t) is the projection onto the tangent space of the manifold, i.e.
Dϕ(q)H(q, t)v = ProjTϕ(q)M

v, ∀v ∈ RD. In the case h = ∇E+h̃, Dϕi(q)h(q) = Dϕi(q)∇E(q)+Dϕi(q)h̃(q).
It is very convenient to abuse the notation and denote Dϕ(q)∇E(q) by ∇E(ϕ(q)). We also use ĥ(ϕ(q)) :=
Dϕ(q)h̃(q) + 1

2Tr(((Dϕ(q))−1)>(Hϕ)(q)(Dϕ(q))−1). Both definitions are well-defined because the variables
are invariant by changes of coordinates. Hence, under these assumptions (67) becomes

dX = (−∇E(X) + ĥ(X)) dt+ ProjTXM (dw) (68)

In short that means that we can treat SDEs on embedded manifolds as SDEs on the ambient space by
projecting the Brownian motions to the tangent space and adding a drift term ĥ that depends on the geometry
of the manifold. Notice that for ODEs on manifolds the additional drift term does not appear and (68) reads
simply dX = ∇E(X)dt.
Notice that the forward Kolmogorov equation for (68) on RD reads

d

dt

∫
f(x) dµt(x) =

∫
(∇E(x)− ĥ(x)) · ∇xf(x) +

1

2
Tr((ProjTxM )>Hf(x)ProjTxM ) dµt(x), (69)

for an arbitrary f .
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