Unified, Geometric Framework for Nonequilibrium Protocol Optimization

Shriram Chennakesavalu* and Grant M. Rotskoff†

Department of Chemistry, Stanford University, Stanford, California 94305, USA

(Received 2 May 2022; accepted 7 February 2023; published 6 March 2023)

Controlling thermodynamic cycles to minimize the dissipated heat is a long-standing goal in thermodynamics, and more recently, a central challenge in stochastic thermodynamics for nanoscale systems. Here, we introduce a theoretical and computational framework for optimizing nonequilibrium control protocols that can transform a system between two distributions in a minimally dissipative fashion. These protocols optimally transport a system along paths through the space of probability distributions that minimize the dissipative cost of a transformation. Furthermore, we show that the thermodynamic metric—determined via a linear response approach—can be directly derived from the same objective function that is optimized in the optimal transport problem, thus providing a unified perspective on thermodynamic geometries. We investigate this unified geometric framework in two model systems and observe that our procedure for optimizing control protocols is robust beyond linear response.

DOI: 10.1103/PhysRevLett.130.107101

Understanding how to efficiently control thermodynamic cycles is a truly foundational problem in thermodynamics. Our modern mathematical framework for macroscopic thermodynamics emerged from efforts to describe the transfer of heat into work and to quantify the wasted or excess heat dissipated to the environment [1]. As it has become possible to probe the thermodynamics of nanoscale systems, both experimentally and in computer simulations, the role of thermal fluctuations has reoriented our interpretation of the fundamental constraints imposed by the second law; at small scales, fluctuation theorems precisely quantify the relationship between entropy production and irreversible dynamics [2–4]. Exploiting nonequilibrium dynamics to understand equilibrium properties like free energy differences has been realized both experimentally and computationally via the Jarzynski equality [5,6]. However, the statistical accuracy of such calculations requires minimizing dissipation over the nonequilibrium ensemble of trajectories by choosing an appropriate external driving protocol [7,8]. What is more, fundamental questions about the design and properties of nanoscale machines from biology to engineering require theoretical tools to carefully interrogate dissipation in stochastic systems.

Despite the importance of measuring dissipation, it has proved challenging to do so accurately in nanoscale systems, with only indirect proxies available. While bounds like the thermodynamic uncertainty relations [9,10] can be used to aid inference, these relations do not necessary tightly constrain the dissipation and cannot be directly correlated with it in general [11]. Nevertheless, recent experimental and computational advances have reinvigorated efforts to design optimal controllers for nanoscale systems. Optimizing a protocol through the use of “thermodynamic geometry” [12–16], an approach in which the dissipation is quantified through a Riemannian path length in the space of protocols, has proved among the most productive strategies for this problem [8,17–19]. The metric itself is derived via a perturbative expansion [8] and hence applies only in the limit of driving that is sufficiently slow or when the magnitude of the perturbation is sufficiently small.

Separately, initially spurred by developments in the study of variational solutions to certain partial differential equations [20–22], a distinct geometry, based on optimal transport theory, has been connected to nonequilibrium dissipation. In this formulation, distances are measured not with a Riemannian metric but directly between probability distributions by determining a minimum cost transport plan that moves the probability mass from an initial distribution ρ_A to a given target ρ_B. The cost defines the Wasserstein metric, which, in the Monge formulation, is formally defined through an optimization problem,

$$W_2^2(\rho_A, \rho_B) = \inf_{T} \int_{\Omega} |x - T(x)|^2 \rho_A(x) dx,$$ (1)

where T ranges over all valid maps or transportation plans that send ρ_A to ρ_B. The Wasserstein metric is a lower bound on the dissipative cost to transform ρ_A to ρ_B in a finite time, and, importantly, provides an alternate geometric framework for minimizing dissipation [23]. Unlike the perturbative formulation that leads to the thermodynamic Riemannian metric, this approach makes no approximation to quantify the total change entropy along a dissipative transformation. However, the constrained minimization problem (1) that one must solve to compute the Wasserstein distance is notoriously challenging, both analytically and numerically [24].

Here, we introduce a theoretical and computational framework for optimizing control protocols that realize
we develop also apply to open quantum systems [26]. Langevin dynamics, though we see that the methods apply to systems that evolve according to overdamped potential energy of the system. The results we derive below active area of inquiry [27,28].

While we do not consider underdamped Langevin dynamics, minimizing dissipation in these systems is an active area of inquiry [27,28].

Connection between the thermodynamic metric and the optimal transport problem.—We consider first a system with coordinates $x \in \Omega \subset \mathbb{R}^d$ subject to the following overdamped Langevin equation:

$$
\dot{x} = -\nabla U(x, \lambda(t)) + \sqrt{2\beta^{-1}} \eta(t),
$$

where η is a Gaussian random variable with $\langle \eta(t) \rangle = 0$ and $\langle \eta_i(t) \eta_j(t') \rangle = \delta(t-t') \delta_{ij}$. The external protocol λ changes as a function of time, which drives the system away from equilibrium. As a result, the time-dependent distribution $\rho(x, t)$ of states may be non-Boltzmann, but it does satisfy a Fokker-Planck equation,

$$
\partial_t \rho + \nabla \cdot (v \rho) = 0,
$$

where the local velocity is

$$
v(x, t) = -\nabla U(x(t), \lambda(t)) - \beta^{-1}\nabla \log \rho(x, t).
$$

Nonconservative forces can be incorporated into this framework and only change the expression for the local velocity [23]. The total entropy production can be written in terms of the heat flow to the environment using the stochastic thermodynamics convention for the heat flow [29,30],

$$
\beta Q = -\int_0^t \beta(t) \nabla U(x(t), \lambda(t)) \cdot dx(t),
$$

and the Gibbs entropy of the system. Combining these terms, we obtain a quadratic form for the total entropy production along a nonequilibrium transformation [23,31,32],

$$
\Delta \Sigma_{\text{tot}} = \int_0^t \beta(t) \int_\Omega v^T(x, t) v(x, t) \rho(x, t) dx dt.
$$

Hence, to minimize the dissipation associated with a transformation from the thermodynamic state specified by $\lambda(0)$ to a state in which the control parameters are fixed at $\lambda(t_f)$, we must identify a minimizer $\lambda_*(t)$ of Eq. (6), noting that local velocity and the density both depend on λ. Formally, we solve

$$
\lambda_* = \arg\min_{\lambda; [0, t_f] \to \mathbb{R}^k} \Delta \Sigma_{\text{tot}}[\lambda].
$$

This minimization problem has a geometric interpretation: the minimum of Eq. (6) over all (v, ρ) satisfying Eqs. (3) and (4) with the boundary conditions that $\rho(\cdot, 0) = \rho_A$ and $\rho(\cdot, t_f) = \rho_B$ are exactly the Benamou-Brenier formulation of the Wasserstein optimal transport distance [22,33]. In the present work, we optimize not over velocity fields and densities but rather protocol λ which, when sufficiently flexible, provides substantial control over the distribution. While this constraint means that we may not saturate the optimal transport distance in general, the examples we consider here are ones in which the protocol provides complete control over the distribution. Furthermore, we believe that a protocol optimization framework is more physically practical than a setting in which the requisite velocity fields to minimize Eq. (6) are inaccessible to any external controller. Minimizing Eq. (6) provides an alternative formulation of the Wasserstein optimal transport problem defined in Eq. (1), as explained in the Supplemental Material [32]. The connection between optimal transport and dissipation is well known in the partial differential equations literature [34] and was subsequently connected to stochastic thermodynamics by Aurell and co-workers [23,31]; recently this connection was discussed in Ref. [35] to provide a framework for general thermodynamic speed limits (cf. Refs. [12,14,23]).

Computing the minimizer λ_* analytically is generically challenging because of the nonlinear dependence of the distribution on the protocol. Within a linear response approximation, the form of the distribution simplifies considerably, and the quadratic functional can be written
as an explicit function of λ; we now demonstrate that carrying out the minimization of Eq. (6) with respect to λ recovers the Riemannian thermodynamic metric. Following the dynamical linear response framework of Zwanzig [36] (see also Ref. [37]), we assume that λ changes slowly relative to the rate of relaxation of the system. We expand the instantaneous density around the equilibrium density with the control parameters fixed:

$$\rho(x, t) = \rho_0(x, \lambda(t)) + \epsilon \rho_1(x, \lambda(t)) + O(\epsilon^2).$$

(8)

At first order in ϵ we obtain

$$\rho_1(x, t) = \beta \rho_0(x, t) \int_0^\infty \delta\Theta(x^t(s), t) \cdot \dot{\lambda}(t) ds,$$

(9)

where $\delta\Theta(x, s)$ denotes the deviation of the generalized forces from their average, $\partial_s U(x, \lambda(t)) - \partial_s F(\lambda(t))$. The only part of the quadratic functional that depends on λ is the work; to leading order in ϵ an explicit computation [32] shows that the protocol-dependent dissipation is

$$L[\lambda] = \int_0^T \dot{\lambda}^T(t) \zeta(\lambda(t)) \dot{\lambda}(t) dt,$$

(10)

with

$$\zeta(\lambda(t)) = \beta \int_0^\infty \langle \delta\Theta(s) \delta\Theta^T(0) \rangle_{\lambda(s)} ds.$$

(11)

Minimizing the expression (10) yields a geodesic with respect to the positive definite symmetric form ζ; these geodesics in protocol space are minimum dissipation protocols within the linear response approximation [12,17]. The \mathcal{W}_2-optimal local velocity associated with the thermodynamic geodesic is explicitly given by the negative, temperature scaled spatial gradient of the perturbative correction $\epsilon \rho_1$, simply plugging Eq. (8) into Eq. (4).

Computational approach.—We consider two general paradigms for determining protocols that minimize Eq. (6). The first involves specifying a set of intermediate distributions and learning a protocol $\lambda_\epsilon(t)$ that drives the system along a Wasserstein geodesic between these intermediate distributions. Alternatively, we specify a protocol $\lambda(t)$ and determine an optimal speed function $\phi_\epsilon(t)$ such that the system driven under $\lambda(\phi_\epsilon(t))$ minimizes Eq. (6). The first paradigm ensures that an engine reaches the desired intermediate distribution even when the driving is fast relative to the relaxation time of the system. The latter approach constrains the protocol but is less computationally and experimentally demanding.

To drive the system through prespecified intermediate distributions (see Fig. 1), we use gradient-based optimization to learn protocols $\lambda_\epsilon(t)$. Given an initial distribution ρ_A and a final distribution ρ_B, we compute a Wasserstein geodesic that interpolates these two distributions. This path through the space of probability distributions is known as a displacement interpolation [33,34]. Computing this geodesic exactly is computationally demanding for arbitrary ρ_A and ρ_B, so, for a general system, one must instead estimate a displacement interpolation using computational optimal transport algorithms, such as the Sinkhorn algorithm [24]. We anticipate that this approximate calculation of the Wasserstein geodesic will be tractable even for relatively high-dimensional systems [38]. In the present work, we do not directly contend with this approximation; for the two minimal models considered here, we can compute the Wasserstein geodesics exactly.

Determining a displacement interpolation $\rho_\epsilon(t)$ does not directly yield a protocol that drives the system through the set of probability distributions that constitute the geodesic. While it would be possible to identify λ_ϵ from ρ_ϵ in the quasi-static limit, when the system is driven far from equilibrium, we must optimize the protocol so that the empirical distribution remains close to $\rho_\epsilon(t)$. We represent λ_ϵ using a neural network and carry out our optimization using automatic differentiation. The gradient information is stored throughout the dynamical evolution of the system, and gradients are explicitly backpropagated through the trajectory. Automatic differentiation is a natural way to optimize λ_ϵ for the nonequilibrium systems considered here, as it enables dynamical information to be implicitly incorporated into a learned protocol. We note that for large protocol durations, it is impractical to differentiate throughout the entire trajectory; instead, we carry out our optimization over short-time intervals.

Optimizing a nanoscale Brownian engine.—We consider a minimal model for a nanoscale Brownian engine, consisting of a Brownian particle in a harmonic potential.
The temperature T of the heat bath and the strength of the harmonic potential k are controlled to mimic a Stirling cycle [39]. The model is depicted schematically in the inset of Fig. 2(a). In our implementation, each stage of the engine cycle has a fixed duration of $\tau = 4$. Given T_h and T_c, the maximum and minimum allowed temperature of the bath, and k_h and k_l, the maximum and minimum allowed strength of the harmonic potential, we can exactly specify the equilibrium distributions at the end points of each step of the Stirling cycle, which are Gaussian with $\mu = 0$ and $\sigma^2 = T/k$. Because the distributions are Gaussian, we can exactly determine a displacement interpolation ρ between the end points of each stage.

We carry out this optimization for a range of protocol durations τ, the shortest of which are far from the linear response regime and the longest of which are essentially quasistatic. For each τ we consider, we optimize the protocol λ_i separately. We compare our results with optimal protocols determined using the linear response approximation [40], which we denote λ_{LR}. Here, λ_{LR} also drives the engine along a Stirling cycle and has the same T_h, T_c, k_h, and k_l as λ_i. Importantly, we observe that, in the fast-driving regime, the Brownian engine driven under λ_i (dark blue circle) can achieve near Carnot efficiency and has a higher efficiency in comparison to the Brownian engine driven by λ_{LR}.

FIG. 2. The dissipation profiles for two nanoscale engines plotted across different protocol durations τ. (a) For a nanoscale Brownian engine (see inset), the dissipation for the optimal protocol λ_i (dark blue circle) is lower than the dissipation for protocols computed according to a linear response approximation λ_{LR} for different smoothness parameters d [40]. (b) For a superconducting qubit (see inset), the optimal protocol $\lambda(\phi)$ (dark blue circle) is less dissipative than a protocol computed using a linear response approximation $\lambda(\phi_{LR})$ (green triangle) [19] or a base sinusoidal protocol $\lambda(t)$ (red square).

The dissipation plotted against W^2_2/τ (the squared Wasserstein distance normalized by protocol duration) for the isothermal compression of a Brownian engine across different τ. An increasing dissipative cost is incurred as W^2_2/τ increases, consistent with Eq. (6). Inset: the efficiencies of the Brownian engine plotted against the protocol duration τ for a learned optimal protocol λ_i and protocols determined from a linear approximation [40]. Even for fast drivings, the Brownian engine driven by λ_i (dark blue circle) can achieve near Carnot efficiency and has a higher efficiency in comparison to the Brownian engine driven by λ_{LR}.

FIG. 3. The dissipation plotted against W^2_2/τ (the squared Wasserstein distance normalized by protocol duration) for the isothermal compression of a Brownian engine across different τ. An increasing dissipative cost is incurred as W^2_2/τ increases, consistent with Eq. (6). Inset: the efficiencies of the Brownian engine plotted against the protocol duration τ for a learned optimal protocol λ_i and protocols determined from a linear approximation [40]. Even for fast drivings, the Brownian engine driven by λ_i (dark blue circle) can achieve near Carnot efficiency and has a higher efficiency in comparison to the Brownian engine driven by λ_{LR}.

Finally, for λ_i, we further analyze the relationship between W^2_2/τ and the dissipation for this step and observe that as W^2_2/τ increases, the dissipation increases (Fig. 3), as expected from Eq. (6).

Remarkably, we see that the Brownian engine driven under λ_i enables us to realize protocols that have a higher efficiency η compared to protocols driven by the linear response protocol λ_{LR} (see Fig 3, inset). In fact, the optimal transport protocols approach the Carnot efficiency even for fast driving. In this regime, the linear response protocol λ_{LR} does not maximally expand the engine, thus limiting the work done by it. Because we learn a distinct λ_i for each τ, the Brownian engine does expand nearly maximally, resulting in greater work extraction. Crucially, the system also remains near the displacement interpolants, ensuring minimal dissipation and thus a higher efficiency.

Minimum dissipation control of a model superconducting qubit.—To show that our computational framework...
also applies to Markovian quantum dynamics, we investiga-
tigate a model of a superconducting qubit engine. We note
that for discrete state Markov processes, extending the
Benamou-Brenier formulation exactly requires a distinct
metric [41]; however, we optimize \(\mathcal{W}_t \) and demon-
strate numerically that this lower bound to heat (cf. Ref. [26],
Theorem 2) also yields a powerful variational principle for
optimal control problems. In this model [Fig. 2(b), inset],
we modulate the temperature \(T \) of the environment and the
level splitting of the qubit \(V \) as a function of time. We
optimize protocols (i) using a prespecified protocol and
varying the speed at which the protocol is traversed and
(ii) by setting target intermediate distributions and optimiz-
ing \(V(t) \) and \(T(t) \).

For (i), we used a sinusoidal protocol \(\lambda(t) \), as specified in
the Supplemental Material [32]. We compare three differ-
ent protocols \(\lambda(t) \), \(\lambda(\phi_{LR}(t)) \), and \(\lambda(\phi_c(t)) \), where \(\phi_c \)
determined by minimizing the length \(\mathcal{W}_2 \) along the protocol
and \(\phi_{LR} \) was determined in Ref. [19]. We observe that for
the qubit engine driven under \(\lambda(\phi_c(t)) \), the dissipation is lower
compared to the engine driven by both \(\lambda(t) \) and \(\lambda(\phi_{LR}(t)) \)
for fast driving, as shown in Fig. 2(b). We find that the work
obtained using \(\lambda(\phi_{LR}(t)) \) is higher than that of \(\lambda(\phi_c(t)) \),
resulting in the efficiency under \(\lambda(\phi_{LR}(t)) \) being marginally
better than that of \(\lambda(\phi_c(t)) \). Of course, the expression that we
optimize [Eq. (6)] only includes dissipation as an objective,
so there is no guarantee of higher efficiency.

For (ii), we optimize a protocol \(\lambda_c \) to drive the qubit
engine through prespecified intermediate distributions \(\rho_c(t) \). We considered the distributions that the system
relaxed to at \(t = 0, \tau/4, \tau/2, \) and \(3\tau/4 \) in the quasistatic
limit under the sinusoidal protocol, and specified \(\rho_c \) to be
the displacement interpolation of these distributions. We
computed these geodesics exactly using the density matrix.
As with the Brownian heat engine, we used automatic
differentiation to learn a protocol \(\lambda_c(t) \). The optimal
protocol \(\lambda_c(t) \) is less dissipative than all other protocols,
and the corresponding steady state distribution \(\rho(t) \) closely
realizes \(\rho_c \). Ultimately, the results observed in the two
systems considered demonstrate the utility of the unified
geometric framework and the computational approach
introduced here in learning minimally dissipative protocols
for nonequilibrium control.

This work was supported by the Department of Energy,
Office of Basic Energy Sciences, Division of Materials
Science and Engineering, under Grant No. DE-
SC0022917.

les machines propres à développer cette puissance, Ann. Sci.
Éc. Norm. Supér. 2e série, 1, 393 (1872).

differences for microscopically reversible Markovian sys-

symmetry in the large deviation functional for stochastic

[4] J. Kurchan, Fluctuation theorem for stochastic dynamics,

Bustamante, Equilibrium information from nonequilibrium
measurements in an experimental test of Jarzynski’s equality,
Science 296, 1832 (2002).

[7] P. Maragakis, F. Ritort, C. Bustamante, M. Karplus, and
G.E. Crooks, Bayesian estimates of free energies from
nonequilibrium work data in the presence of instrument

Geometric approach to optimal nonequilibrium control:
Minimizing dissipation in nanomagnetic spin systems,

Relation for Biomolecular Processes, Phys. Rev. Lett. 114,

England, Dissipation Bounds All Steady-State Current

dissipation from current fluctuations, J. Phys. A 50,
184004 (2017).

[13] P. Salamon and R.S. Berry, Thermodynamic Length and
Dissipated Availability, Phys. Rev. Lett. 51, 1127
(1983).

[14] P. Salamon, J.D. Nulton, and R.S. Berry, Length in
statistical thermodynamics, J. Chem. Phys. 82, 2433
(1985).

[16] F. Schlögl, Thermodynamic metric and stochastic measures,

(2012).

[18] G.M. Rotskoff and G.E. Crooks, Optimal control in noneq-
ulilibrium systems: Dynamic Riemannian geometry of the

[19] K. Brandner and K. Saito, Thermodynamic Geometry of
Microscopic Heat Engines, Phys. Rev. Lett. 124, 040602
(2020).

[20] C. Villani, Topics in Optimal Transportation, Graduate
Studies in Mathematics No. 58 (American Mathematical
Society, Providence, 2003).

Kantorovich mass transfer and its computational fluid

