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ABSTRACT
Coarse-grained models are a core computational tool in theoretical chemistry and biophysics. A judicious choice of a coarse-grained
model can yield physical insights by isolating the essential degrees of freedom that dictate the thermodynamic properties of a complex,
condensed-phase system. The reduced complexity of the model typically leads to lower computational costs and more efficient sampling
compared with atomistic models. Designing “good” coarse-grained models is an art. Generally, the mapping from fine-grained config-
urations to coarse-grained configurations itself is not optimized in any way; instead, the energy function associated with the mapped
configurations is. In this work, we explore the consequences of optimizing the coarse-grained representation alongside its potential energy
function. We use a graph machine learning framework to embed atomic configurations into a low-dimensional space to produce efficient
representations of the original molecular system. Because the representation we obtain is no longer directly interpretable as a real-space
representation of the atomic coordinates, we also introduce an inversion process and an associated thermodynamic consistency relation
that allows us to rigorously sample fine-grained configurations conditioned on the coarse-grained sampling. We show that this tech-
nique is robust, recovering the first two moments of the distribution of several observables in proteins such as chignolin and alanine
dipeptide.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141888

I. INTRODUCTION

Biophysical systems evolve with intricately orchestrated
dynamics, and even the most subtle molecular motions can inform
both their large-scale static and dynamic properties. In most
biomolecular systems of interest, there is no reliable way to deter-
mine which degrees of freedom can be neglected to obtain an
effective model that makes predictions in quantitative agreement
with atomistic models. The coupling of both time and spatial scales
creates inherent challenges for molecular simulation: many phe-
nomena we would like to simulate, such as protein conformational
change,1,2 protein folding,3 and multicomponent self-assembly,4
occur rarely, requiring simulations far too costly for even the most
powerful computers. The need to access conformational dynamics
on very long timescales has spurred the development of many accel-
erated sampling methods, which can ameliorate this issue. How-
ever, these methods typically require defining a low-dimensional
coordinate of interest and sampling that low-dimensional space
exhaustively.

Coarse-graining, also known as dimensionality reduction, is
intended to provide a model of reduced complexity that can be
used, in principle, to accelerate sampling.2,5–9 For biophysical sys-
tems, coarse-grained models are typically developed intuitively by
assigning groups of atoms within a molecule to a fixed “bead”
that represents a salient substructure.5 With this representation, the
coarse-grained model can be parameterized with a potential energy
function of essentially the same functional form as that of the orig-
inal molecular model. This strategy has been enormously successful
in various contexts.1,3,10 However, due to the dimensionality reduc-
tion, there are questions that simply cannot be answered using a
coarse-grained model, no matter how accurately it has been param-
eterized. For example, it is not possible to compute any observables
that depend on atomistic detail that has been projected out, nor is
it possible to accurately compute energetic information without an
auxiliary model.11

In this work, we ask if it is possible to accelerate dynam-
ics through dimensionality reduction while maintaining the ability
to evaluate equilibrium averages of observables defined on the
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fine-grained system with quantitative accuracy. Although other
works have sought to invert the coarse-grained representation, gen-
erally, they do so in a data-driven way that does not rigorously yield
a physical distribution of states.7,12 To carry out this procedure, we
combine an embedding strategy based on the hierarchical dimen-
sionality reduction for graph data13 with a backmapping procedure
that allows us to rigorously sample Boltzmann-weighted configura-
tions of the fine-grained system conditioned on the coarse-grained
configurations. This strategy ensures that we can evaluate averages
of arbitrary atomistic observables, some of which cannot even be
defined for the corresponding coarse-grained model.

To construct the coarse-graining map, we do not just specify
a priori how to embed the atomic coordinates in a low-dimensional
space, we instead optimize this mapping. This change requires a
distinct paradigm for coarse-graining, in which we use a state-
dependent embedding map that allows for a more flexible, but a
nonlinear representation of the coarse-grained space. We simultane-
ously train the coarse-graining map, its associated potential energy
function in the coarse-grained space, and a map that inverts the
low-dimensional configurations and conditionally generates new
fine-grained structures.

Using generative machine learning models to find low-
dimensional representations has shown success in biomolecular
systems,14–19 but inverting a coarse-graining map requires a spe-
cific structure to ensure that sampling will asymptotically con-
verge to the fine-grained Boltzmann distribution. We represent
the inversion map using normalizing flows,20–22 which have shown
promise for augmenting Markov chain Monte Carlo (MCMC)
sampling.16,23–25 Although normalizing flows are challenging to
optimize for sampling high-dimensional distributions with multiple
metastable states,15,24 the conditioned sampling procedure that we
employ is considerably easier to train.

This work weaves together many threads being pursued inde-
pendently in the machine learning literature and molecular simula-
tion, including the use of autoencoders for dimensionality reduction,
generative models for sampling, and neural networks for free energy
surfaces, as mentioned above. However, we see the present work as
not the introduction of an algorithm or computational procedure
but rather a conceptual development in coarse-grained modeling.
We believe that allowing for a more complicated, less interpretable
coarse-grained space provides new opportunities to accelerate sam-
pling in the fine-grained space. The extended notion of weak ther-
modynamic consistency that we introduce provides a framework on
which to build new coarse-graining strategies that are targeted to
particular classes of observables, which may allow for more efficient
models for precise scientific questions.

II. RELATED WORK
The approach that we take here incorporates the optimization

of a coarse-graining map, backmapping of the coarse-grained con-
figurations, and new criteria for evaluating the quality of sampling.
Each of these ideas individually has attracted substantial atten-
tion. For example, automated construction of coarse-graining maps
has a long history,26–29 and approaches based on determining the
“essential dynamics” by identifying collective modes via the princi-
pal component analysis30 or ranking maps based on information-
theoretic criteria.31,32 The process of inverting a coarse-graining

map, or backmapping, has been studied in several contexts;12,14,33,34

these works use either deterministic mappings or non-invertible
generative models. As a result, it is impossible to exactly reweight the
backmapped structures relative to the target Boltzmann distribution,
which is the central desideratum of our algorithm.

Because we compute observables on the backmapped struc-
tures, which have the full molecular detail, we introduce a criterion
for evaluating the quality of our sampling that is based on the notion
of weak convergence from probability theory. Like our framework,
previous studies have sought to compute fine-grained observables
directly from coarse-grained structures.11,35–39 Many of these works
focus on an approach to mitigate the representability problem, which
arises when the coarse-grained analog of a fine-grained observable
does not naturally coincide with a conditional average of the fine-
grained observable, for details cf. Ref. 39. This does not arise in our
work due to the inversion and reweighting—we only evaluate the
fine-grained observables.

Taken together, these works highlight the pressing need for
systematic methods to incorporate generative models into sam-
pling and coarse-graining with high data efficiency.40 This need
becomes especially acute when the coarse-graining map is a learned
embedding and may yield a less interpretable coarse-grained space.

III. WEAK FORMULATION OF THERMODYNAMIC
CONSISTENCY

Atomic resolution molecular models of biophysical systems can
provide detailed and accurate insight into the static and dynamic
properties of biomolecules, provided that there are sufficiently pow-
erful computational resources to collect a statistically representa-
tive sample of configurations of an n-particle system, {xi}n

i=1 with
each configuration xi ∈ R3n. Due to ergodicity, an MD simulation
in the canonical ensemble samples a Boltzmann distribution, and
the probability of a given configuration is given by the familiar
expression,

ρ(x)dx = Z−1e−βU(x)dx, (1)

where Z is the partition function, β = 1
kBT is the reduced inverse

temperature, and U : R3n → R is the fine-grained potential energy
function.

When we coarse-grain a molecular system, we reduce the
dimensionality and necessarily destroy the information. Hence,
when carrying out this destructive process, we should ideally pre-
serve the most important degrees of freedom required to describe
the fluctuations of the system. In landmark work, Noid et al.2 estab-
lished the notion of thermodynamic consistency to provide a formal
description of the requirements of a “good” coarse-graining map. In
their formulation, we require equivalence between the potential of
mean force F̂ and the parametric coarse-grained potential Û(⋅, θ),

F̂(z) ≡ −β−1 log∫
Ω

e−βU(x)δ(M(x) − z)dx↔ Û(z, θ), (2)

and we emphasize that this equivalence is up to an arbitrary additive
constant. Here, M is the coarse-graining map. The function Û(⋅, θ)
depends on the parameter θ that is optimized so that the gradients
of Û match the gradients of F̂. Throughout, we use ⋅̂ to designate a
function defined on the coarse-grained domain. This ensures that
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canonically distributed samples of coarse-grained configurations
sampled in proportion to

ρ̂(z, θ)dz ∶= Ẑ−1e−βÛ (z,θ)dz, (3)

will recover the projected distribution. The key observation is that
equivalence is defined in the coarse-grained space.

The requirement of thermodynamic consistency is a stringent
one in the sense that it enforces the equivalence at the level of the
distribution rather than, for example, the equivalence of some col-
lection of observables. Of course, there are other potentially useful
notions of equivalence for probability distributions that could lead
to additional flexibility in the procedure. Here, we take inspiration
from the measured theoretic notion of weak convergence, which
quantifies the difference between distributions through expectations
(or average values) of bounded, continuous functions. Importantly,
this notion could be applied in either the coarse-grained space or
the fine-grained space to optimize and test a coarse-graining map.
Throughout, we measure “weak thermodynamic consistency” in the
fine-grained space. We refer to a coarse-graining map M and the
associated potential Û as “F thermodynamically consistent” if for
every observable f ∈ F ,

∫ f (x)pinv(x∣z)ρ̂(z, θ) dxdz Ð→ ∫ f (x)ρ(x) dx. (4)

In this expression, pinv(x∣z) is the conditional probability of gener-
ating x from a coarse-grained configuration z—finding a map that
performs this inversion in a way that is suitable to reweighting or
Monte Carlo is a central goal of the present work and is discussed at
length in Sec. V. This definition of thermodynamic consistency dif-
fers from Ref. 2 because we only require equivalence on some set of
observables F , which could be adapted to a particular problem.

In Appendixes A–H, we prove the following straightforward
proposition, which relates weak thermodynamic consistency to the
definition introduced by Noid et al.2

Proposition III.1. An invertible coarse-graining is a tuple
(M, Û, T) consisting of a coarse-graining map M : R3n → R3k, a
coarse-grained potential Û : R3k → R, and a normalizing flow T :
R3n → R3n. Let F∗ denote the set of functions of continuous, bounded
functions,

F∗ ∶= { f ∈ C(R3n,R)∣ f = f̂ ○M, f ≠ 0 ∀ f̂ ≠ 0, f̂ : R3k → R},

which denotes the collection of observables that are nontrivial
on the coarse-grained space. If (M, Û, T) is F∗ thermodynam-
ically consistent, then the projective coarse-graining (M, Û) is
thermodynamically consistent in the sense of Ref. 2.

At a high level, this statement says that if weak thermo-
dynamic consistency holds for all observables not orthogonal to
the coarse-graining map, then the projective coarse-graining is
thermodynamically consistent.

IV. STATE-DEPENDENT PROJECTION MAPPING
Neural networks construct a nonlinear embedding of the input

data, which is often viewed as constructing a basis in which regres-
sion or classification can be performed easily.43,44 The fact that
learned embeddings provide a highly efficient dimensionality reduc-
tion has been exploited in molecular contexts, including for reaction
coordinates45,46 and searching through chemical space.47 Neverthe-
less, this strength has not been thoroughly explored in the context of
coarse-graining, despite the fact using that autoencoders in the con-
text of the reaction coordinate discovery emphasizes that machine
learning is well-suited to finding low-dimensional representations
capable of capturing slow degrees of freedom.46,48–50 Instead, typ-
ically the coarse-graining map is specified at the outset based on
physical intuition.

In this work, we learn the coarse-graining map, choosing only
the dimensionality of the coarse-grained space (see Fig. 1). Although
we have developed a framework for training a coarse-graining map
that is an arbitrary nonlinear function (Appendix B), all results
presented here use a state-dependent linear projection map that is
itself a nonlinear function of the atomic positions. We train the
model to find optimal projections using a reconstruction loss scheme
described in detail in Appendix B. Our training procedure resembles
the typical paradigm for autoencoders,51 adding auxiliary loss func-
tions to regularize the learned representation and favor locality in
the coarse-grained mapping.

The embedding we use is depicted schematically in Fig. 2. Our
approach is based on differentiable pooling (DiffPool), an algo-
rithm developed for parameterizable graph coarsening.13 We use a
pooling layer that consists of an equivariant graph neural network
that outputs a projection matrix Px, given a fine-grained configura-
tion x. Thus, although the projection matrix is a nonlinear function
of the input coordinates, the representation in the coarse-grained

FIG. 1. A schematic overview of the coarse-graining procedure. First, a fine-grained molecular structure is embedded with a state-dependent learned projection M. A
coarse-grained potential Û is used to sample coarse-grained configurations z so that they are distributed according to a Boltzmann distribution with respect to Û, as described
in Sec. IV. These samples are subsequently used to conditionally sample fine-grained configurations as described in Sec. V.
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FIG. 2. Schematic of the computational pipeline for coarse-graining (left) and backmapping (right). Left. Configurations are shown as 2-D graphs for ease of visualization.
Initial configuration x i is passed through a coarse-graining neural network based on the E(n) − EGNN graph neural network architecture41 to determine the corresponding
coarse-grained configuration zi . Coarse-Grained configuration is passed through a decoding network to reconstruct a set of target atoms x̃ i . Coarse-grained potential energy
Û is computed as a function of zi and is represented using a neural network based on the SchNet42 architecture. Right. With an autoregressive rational-quadratic neural
spline flow (RQ-NSF), internal coordinates ϕ j

i are iteratively generated conditioned on x̃ i and ϕ0: j−1. These internal coordinates are then used to sequentially reconstruct
the entire fine-grained structure.

space is a linear transformation of the input coordinates. This means
that we can train the potential energy function for the coarse-grained
model with a typical force-matching objective.9 In our examples,
with the auxiliary loss functions we employ, we find that the coarse-
graining map is typically only weakly state-dependent, as depicted in
the first panel of Fig. 1. Admittedly, the representation of the coarse-
grained configuration becomes more difficult to interpret due to
the complicated relationship between the fine-grained configura-
tion and the resulting projection matrix. The loss of interpretability
instead motivates us to invert the coarse-graining map directly.

V. INVERTING THE COARSE-GRAINED SAMPLES
We often use molecular simulations to investigate properties

or observables f : R3n → R that require atomic resolution. Such
observables cannot be mapped onto a coarse-grained configuration,
and finding appropriate proxies in the coarse-grained space for a
detailed molecular property is challenging in general—there is no
unique strategy. Moreover, the strategy we use to embed molecu-
lar configurations is not amenable to a physical interpretation. In
this work, we carry out a two-stage process that allows us to recon-
struct fine-grained configurations while also leveraging the reduced
dimensionality of the coarse-grained system to accelerate the explo-
ration of the free energy landscape. We first sample the collections
of coarse-grained configurations in proportion to the coarse-grained
Boltzmann probability ρ̂(z)dz. We subsequently employ an invert-
ible neural network, known as a normalizing flow, to harvest a
statistical sample of fine-grained configurations in such a way that
we can reweight fine-grained configurations in proportion to their
true Boltzmann weight.

It requires care to ensure that the sampling and subsequent
reconstruction can be combined to obtain the correct statistics for
the target Boltzmann distribution of the fine-grained system. In gen-
eral, there are two options: Metropolis Monte Carlo or reweighting.
To do so, we must be able to compute the exact likelihood of gener-
ating a fine-grained configuration—this depends on both the proba-
bility of a coarse-grained configuration in our sampling scheme and
the conditional probability of generating the fine-grained configura-
tion from a coarse-grained configuration. We elaborate on how to
compute both contributions to the likelihood below.

Sampling the coarse-grained system with the Metropolis-
adjusted Langevin Algorithm (MALA) leads to a collection of
coarse-grained configurations {zi}k

i=1 that are distributed in pro-
portion to the Boltzmann distribution associated with the coarse-
grained energy function, that is ρ̂(z)∝ exp (−βÛ(z, θ)). We use
the conventional force-matching paradigm to train the parameters
θ of Û, for which we use a standard implementation of the SchNet
architecture;42 the framework is obviously extensible to other neu-
ral networks. We train the energy function so that it reconstructs
the potential of mean-force F̂ associated with the fine-grained dis-
tribution. Although the coarse-grained energy function Û is often
represented with an empirical potential functional form, recently
more general functional forms have been employed, not only using
traditional empirical potentials but also adding a general neural
network.8,9 Because the optimization of the force-matching objective
relies on data collected from fine-grained molecular simulations, the
coarse-grained potential will not exactly match the potential of mean
force F̂. We note that because we are only focused on generating
samples, not accurately recapitulating dynamical information, we do
not need to incorporate a spatially dependent diffusion tensor.52
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We invert the coarse-grained representation in two steps;
first, we map the coarse-grained configuration via a linear back-
projection decoding map M dec : R3k → R3ñ . In our examples, the
backbone is reconstructed from this map. We then condition-
ally sample fine-grained configurations x using a normalizing flow
T, which parameterizes a conditional distribution pinv(x∣z). The
normalized value of this conditional probability is required to
exactly reweight or metropolize, which is only tractable with a
normalizing flow neural network architecture.21 Reweighting or
metropolization yield Boltzmann-distributed configurations, even
when the normalizing flow does not exactly generate a Boltzmann
distribution.

Viewed as an MCMC algorithm, the generation probabilities
are explicit functions of the generated configuration and do not
depend on the previous configuration within the Markov chain.
Given the current state of the Markov chain, xi, we can write the
probability of generating a new state xi+1 as

pgen(xi+1∣xi) = ρ̂(zi+1)pinv(xi+1∣zi+1)dzi+1, (5)

where the conditional distribution can be computed using the push-
forward probability density. The pushforward density is given by
inverting the map and evaluating its probability in the Gaussian
density,

T♯ρ(x) = ρ(T̄(x))∣∇T̄(x)∣, (6)

where ∣∇T̄(x)∣ denotes the determinant of the Jacobian of the
inverse of the normalizing flow T, and ρ is the density of a Gaus-
sian with mean zero and identity covariance. The architecture of the
neural network T is constructed so that all the terms above are easily
computable.53

VI. RESULTS
A. Alanine dipeptide

Alanine dipeptide is a standard benchmark for molecular sim-
ulation; its dynamics is well-described by two dihedral angles ϕ and
ψ.54,55 We carried out an MD simulation of alanine dipeptide in

explicit solvent for a total duration of over 0.5 μs. From this tra-
jectory, we generated a dataset by sub-sampling 50 000 data points,
consisting of positions and forces on all 22 atoms of alanine dipep-
tide. With this sub-sampling approach, we automatically coarse-
grain all water molecules out before training. Using this dataset,
we trained a coarse-graining map M, a coarse-grained potential
energy Û, and a normalizing flow to carry out backmapping using
the procedure described in Secs. V and VII and Appendixes B
and C.

Our coarse-graining map M projects the 22 atoms from the
fine-grained configuration to a coarse-grained configuration con-
sisting of 6 beads. Although we allow for state-dependent embed-
dings to be learned, we observe that the embeddings are the same
across all fine-grained configurations in our dataset. Furthermore,
we observe that the learned coarse-graining map projects the five
backbone heavy atoms and the Cβ onto the coarse-grained space.
Importantly, this learned map is consistent with physical intu-
ition and with other coarse-graining works that investigate alanine
dipeptide.8,9

Using the learned coarse-grained potential Û, we run Langevin
dynamics to carry out sampling in the coarse-grained space. We
ran 15 trajectories with different initial points across the different
metastable basins and sampled 20 000 coarse-grained configurations
from these trajectories. Finally, for each of these 20 000 configura-
tions, we carry out our backmapping procedure and generate 2000
fine-grained configurations for a total of 4 × 107 fine-grained con-
figurations. Of course, there is no guarantee that the collection of
fine-grained generated configurations is Boltzmann-distributed; to
ensure this, we carry out a reweighting procedure followed by a
single step of overdamped Brownian dynamics (see Appendix F).

We plot the free-energy surface as a function of the ϕ and
ψ dihedral angles in Fig. 3. Interestingly, we see that in com-
parison to the free-energy surface obtained from MD simulation,
the generated configurations before reweighting greatly oversam-
ple one of the basins; however, with reweighting, the free energy
surface of generated configurations very closely approximates the
free-energy basin obtained via MD simulation and is in strong
qualitative agreement with free-energy surfaces documented in the

FIG. 3. Free-energy landscape of alanine dipeptide as a function of ϕ and ψ dihedral angles. Generated configurations from coarse-grained simulations backmapped
into fine-grained configurations (left). Generated configurations from coarse-grained simulations backmapped into fine-grained configurations with reweighting to ensure
configurations are Boltzmann-distributed (center). The training dataset consists of configurations sampled via MD simulation (right).
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FIG. 4. Absolute error between free energy from MD and inverted CG sampling for
alanine dipeptide. The error is less than 1 kBT on all metastable states and is only
appreciable in very rare regions that are undersampled by the MD.

literature.56 Figure 4 illustrates the extent of quantitative agree-
ment between a long MD simulation and the reweighted generated
configurations.

Finally, we examine two observables that we are unable to com-
pute for a coarse-grained configuration (Fig. 5). First, we look at
the potential energy computed via an implicit solvent model for the
configurations in our original dataset and our reweighted-generated
configurations and observe that the mean and variance agree quan-
titatively. Next, we considered the dihedral angle that was computed
using two adjacent methyl-hydrogens and the two nearest backbone
atoms (see Fig. 5 for an illustration). We plot the combined distri-
butions obtained from all six of these dihedral angles computed for
the two methyl caps at the termini of the protein. We are unable
to compute these angles directly from the coarse-grained config-
urations: backmapping is essential. Again, we observe quantitative
agreement between the distribution of these dihedral angles with our
MD dataset and the reweighted generated configurations.

B. Chignolin
Next, we carried out a similar analysis for the CLN025 variant

of chignolin, a fast-folding micro-protein. Chignolin is a ten-residue
protein that adopts a β-hairpin structure in its folded state.57 Unlike
alanine dipeptide, chignolin does not have a set of physical collective
variables that can aptly characterize the conformational dynamics.
Instead, we utilize the time-lagged independent component analysis
(tICA) to determine the necessary collective variables.58,59 Using a
publicly available trajectory of chignolin simulated in an explicit sol-
vent,9 we collated a dataset consisting of 50 000 positions and forces
on all 175 atoms of chignolin. We again coarse-grain out all water
molecules before training. As with alanine dipeptide, we train a M,
Û, and a normalizing flow using the procedure described in Secs. V
and VII and Appendixes B and C.

For chignolin, the coarse-graining map M projects the
175 atoms in the fine-grained configuration to a coarse-grained
configuration consisting of 30 beads. As with alanine dipeptide,
we observe that the state-dependent embeddings weakly depend
on the fine-grained configurations in our dataset. Furthermore, we
observe that the coarse-graining map learns to project backbone
atoms (C, Cα, N) onto the coarse-grained space, again learning an
intuitive and physically meaningful map.

With our trained Û, we carried out coarse-grained dynamics
consisting of 27 trajectories with different initial points. From these
coarse-grained trajectories, we backmapped 54 000 coarse-grained
configurations, where we generated 750 fine-grained configura-
tions per coarse-grained configuration. The generated configura-
tions were generally high-energy configurations; however, this was
generally a result of minor structural deformities as opposed to
major flaws in the reconstruction procedure. To alleviate this, we
carry out short overdamped Brownian dynamics to relax the struc-
ture. Finally, we carried out a reweighting step to ensure that the
configurations were Boltzmann-distributed (see Appendix F).

We plot the free-energy surface as a function of the two leading
tICA coordinates (see Fig. 6), where we determined the tICA coordi-
nates according to the procedure detailed in Ref. 9. The bottom left
(first) basin corresponds to the unfolded state, the bottom right (sec-
ond) basin corresponds to the folded state, and the top (third) basin
corresponds to the misfolded state. In comparison to the free-energy
surface of the dataset obtained via MD simulation, the free-energy

FIG. 5. Potential energy of alanine dipeptide computed via an implicit model (left) and dihedral angle involving all six pairs of adjacent methyl-hydrogens in N-terminus and
C-terminus methyl groups (right) for reweighted generated configurations (orange) and training dataset obtained via MD (blue). The sample configuration on right illustrates
the dihedral angle.
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FIG. 6. The free-energy landscape of chignolin as a function of time-lagged independent coordinates (tICs). Generated configurations from coarse-grained simula-
tions backmapped into fine-grained configurations (left). Generated configurations from coarse-grained simulations are backmapped into fine-grained configurations with
reweighting to ensure that configurations are Boltzmann-distributed (center). The training dataset consisting of configurations sampled via MD simulation (right).

surface of the generated configurations (before reweighting) is heav-
ily populated in regions adjacent to the basins. However, we observe
that with reweighting, the free-energy surface of generated configu-
rations more closely matches that of the free-energy surface obtained
from MD simulation.

Finally, we compare the two observables that we cannot com-
pute with a coarse-grained configuration. As with alanine dipeptide,
we use an implicit solvent model to compute potential energies
and observe that the distribution of potential energies from our
MD dataset of configurations closely matches the distribution of
potential energies of our generated configuration after reweighting

(Fig. 7). Finally, the hydrophobic side-chains are strongly implicated
in the folding of chignolin;60 we probe the rotameric states of the
bulky tryptophan (Trp) residue in chignolin to assess the ability of
our backmapping procedure to faithfully generate the appropriate
rotamers. The conformation of the Trp residue is highly dependent
on the overall conformation of the protein (i.e., unfolded, folded,
or misfolded), and with our coarse-grained representation, we are
unable to investigate the nature of the rotameric states of the Trp
residue. For our reweighted generated structures, we analyze the
rotameric state of tryptophan using the dihedral angle between the
O, C, Cα, and Cβ atoms of the Trp residue. From the MD dataset, it is

FIG. 7. Potential energy of chignolin computed via an implicit model (left) and dihedral angle (between O, C, Cα, and Cβ) of the bulky tryptophan side chain for three different
basins of chignolin (right) for reweighted generated configurations (orange) and training dataset obtained via MD (blue). Configuration sampled from reweighted generated
configurations for each basin shown, with only backbone and tryptophan residue shown.
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clear that the distribution of the dihedral angle of the Trp residue is
highly dependent on the global conformational state of the protein.
We observe that our generated structures are able to closely, but not
perfectly, approximate the rotameric distribution of the Trp residue
from the MD dataset. Ultimately, we believe that this is a limitation
of either the normalizing flow architecture or the decoder; we antic-
ipate that with improved models, it will be possible to more closely
realize the true distribution of rotameric states.

VII. METHODS
We have developed a computational approach that consists of

three interdependent components: a graph neural network repre-
senting the coarse-graining map M : R3n → R3k, a neural network
representing the coarse-grained potential energy function Û : R3k

→ R, and a normalizing flow T : R3n → R3n that can generate
configurations in the fine-grained space conditioned on a coarse-
grained configuration. We work under the assumption that an
effective coarse-graining M integrates out degrees of freedom that
relax on short timescales while retaining pertinent information from
slower-moving degrees of freedom that inform the free-energy land-
scape. Additionally, we consider an effective M to be one for which
we can train a coarse-grained potential Û that closely matches the
potential of mean force F̂ with a necessarily finite dataset. To account
for this multi-task objective, we consider a cyclic training scheme
that alternates between training M and Û, where M informs the
training of Û and vice versa. Finally, we train the normalizing flow
independently of the training of Û and M.

We represent our configurations using a three-dimensional
graph, where nodes correspond to atoms and edges between nodes
correspond to bonded and nonbonded interactions. The graph
structure is then coarse-grained through a clustering process, where
each cluster corresponds to a coarse-grained “bead” and consists of
a weighted combination of a collection of nodes. This is achieved
via a hierarchical graph pooling technique based on DiffPool13

using the E(n) − EGNN graph neural network architecture, which
imposes necessary rotational and physical invariance constraints.41

The resulting embedding is state-dependent; the exact clustering is
dependent on the input molecular configuration. We represent our
coarse-grained potential energy Û using the SchNet architecture,42

which expands inter-bead distances into Gaussian basis functions
with learnable parameters; these Gaussian basis functions are then
passed through multiple neural network layers. This architecture
similarly imposes the necessary physical constraints, most notably
rotational and translation invariance.

To train M, we consider the encoding-decoding tasks of learn-
ing an embedding to determine a coarse-grained configuration
z =M(x) ∈ R3k, which can then be used to accurately reconstruct
a set of target atoms x̃ =M dec(z) ∈ R3ñ from the original fine-
grained configuration x ∈ R3n. The decoding process is achieved via
“inverse pooling” that is similarly predicated on DiffPool13 with
the E(n) − EGNN architecture.41 The target atoms that are recon-
structed using the decoder need to be specified a priori. In practice,
this requires limited knowledge of the system. For the two systems
we consider here, we designate the backbone as the set of target
atoms to reconstruct.

We first train our coarse-graining network via a reconstruction
loss and a suite of auxiliary losses (Appendix B). The reconstruction
loss is the mean squared deviation (MSD) between M dec(M(x))
and x̃. With an initial coarse-graining map, we then train Û using a
mean-force-matching scheme,

Lmf = [−∇zÛ (z) − F̂ inst(z)]2, (7)

where F̂inst(z) is the instantaneous mean force, which we use as an
estimate of the true mean force (see Appendix B for details on the
mean force). Importantly, F̂inst(z) is a function of M, ensuring that
M informs the training of Û.

We can then use Û to inform the training M using the same
objective in Eq. (7). In subsequent epochs, we train M using Lmf in
addition to the reconstruction and auxiliary losses. Including Lmf
penalizes contributions from atoms that contribute to large vari-
ances in Finst(z), the estimate of the mean force. Physically, these
atoms correspond to fast-moving degrees of freedom. We emphasize
that when training M, Û is held fixed, and vice versa.

Finally, from a coarse-grained configuration z, we would like
to generate configurations in the fine-grained space x ∼ pinv(x∣z),
which we achieve using our decoder M dec and a normalizing flow.
To reduce the computational burden of the generative process, we
work with internal coordinates: bond angles, bond lengths, and dihe-
dral angles. Furthermore, because the distribution of bond angles
and bond lengths are well approximated by independent Gaussian
distributions, with narrow variances, we train a normalizing flow
to only sample dihedral angles ϕ ∈ [−π,π]m with the bond lengths
and bond angles set as the median of their corresponding distribu-
tions. We represent our normalizing flow using rational-quadratic
neural spline flows (RQ-NSF) with autoregressive layers, primarily
because this architecture imposes bounded domains.53 After train-
ing our normalizing flow using a forward loss (see Appendix C),
we can sample dihedral angles ϕ ∼ pNF(ϕ∣x̃). With ϕ and x̃, we can
easily reconstruct our full fine-grained configuration, a configura-
tion in the fine-grained space (see Fig. 2). Thus, our backmapping
procedure amounts to sampling x ∼ pinv(x∣z).

VIII. DISCUSSION
Coarse-graining has traditionally relied on physical intuition to

design effective models for complicated, nonlinear dynamical sys-
tems. With the commensurate loss of intuitive interpretability, we
simultaneously exploit the unique capabilities of generative models
to reconstruct the atomistic coordinates of the system. To interpret
convergence, we introduce a conceptual framework for thermody-
namic consistency that establishes a notion of equivalence based
on averages of observables in the fine-grained space. Additionally,
we introduce a highly modular computational pipeline that adheres
to this framework. Finally, we demonstrate the capability of our
method to quantitatively compute key observables for two proteins:
a simple model system, alanine dipeptide, and a fast-folding protein
with multiple metastable states, chignolin. This includes structural
observables, such as RMSD (Fig. 8).

The computational procedure we introduce here is a synthesis
of a variety of methods originating from the machine learning and
coarse-graining communities. Although practically we were only
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FIG. 8. Distribution of root-mean-square-
deviation (RMSD) of generated configu-
rations from configurations in MD dataset
(orange) and RMSD of configurations
in MD dataset from configurations in
MD dataset (blue). Given ngen gener-
ated configurations and nMD configura-
tions in the MD dataset, orange his-
togram consists of nMDngen RMSDs and
blue histogram consists of nMD(nMD−1)
RMSDs (RMSD was not computed
between same configuration).

able to test a small number of different neural network architec-
tures, we believe there is substantial opportunity for improvement
as the embedding, the representation of the coarse-grained poten-
tial, and the inversion map all become more sophisticated. Fortu-
nately, the strategy that we have introduced is highly modular and
could even be applied to classical force-matching, projective coarse-
graining maps simply by augmenting them with the inversion
map.

In the two systems we investigated here, we had access to a
dataset for which the metastable states of interest were well sampled.
More complex biomolecular systems that are less well character-
ized will require more sophisticated sampling strategies to generate
sufficient data for a generalizable coarse-graining. We anticipate
a feedback approach, where coarse-grained simulations and full
molecular dynamic simulations are used in tandem to map out the
free energy landscape of the system.
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APPENDIX A: NOTATION

Below we abbreviate fine-grained (FG) and coarse-grained
(CG).

n Number of atoms in the FG space

K Number of “beads” in the CG space
ρ FG probability density function
X Typical notation for a configura-

tion in R3n

Z(β) FG canonical partition function
ρ(x)dx = Z−1e−β(x)dx Probability of FG configuration
M : R3n → R3k x Notation for CG map
F̂(z) The potential of mean force associ-

ated with M
⋅̂ Generic indication of a function

defined on the CG domain
Θ Parameters of the CG potential

energy
Û(⋅, θ) CG potential energy, a parametric

function
Ẑ(β, θ) Partition function associated with

the CG potential energy
ρ̂(z, θ)dz = Ẑ−1e−βÛ (z,θ)dz Probability of z with CG energy Û
T a normalizing flow
ρ : R3n → R The base density of the normaliz-

ing flow
ñ < n Number of DOFs in the partially

backmapped structure
⋅̃ Generic indication of a function

defined on R3ñ

pinv(x∣z) Notation for the conditional distri-
bution
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APPENDIX B: COMPUTATIONAL DETAILS
FOR COARSE-GRAINING

We use a training scheme that alternates between training a
coarse-graining function Θ and the coarse-grained energy function
Û. In this scheme, we learn an initial Θ0, which is then used to learn
an initial Û0. This Û0 is then used to partially inform the training of
a new Θ1, with this feedback approach continuing for a predefined
number of epochs nfreeze_cg. After nfreeze_cg training epochs, we fix the
coarse-graining function Θ and train Û until convergence.

We represent our configurations using a three-dimensional
graph, where nodes correspond to atoms and edges between nodes
correspond to bonded and nonbonded interactions. For a given
atom, atoms within a prespecified nonbonded edge cutoff are con-
nected via a nonbonded edge if a bonded edge does not already exist.
We use atomic numbers as input node features and the type of the
edge (bonded, nonbonded, self) as the input edge feature.

To learn a coarse-graining function Θ, we consider the
encoding-decoding tasks of learning an embedding to determine a
coarse-grained configuration zi = Θ(xi) ∈ R3k, which can then be
used to accurately reconstruct a set of target atoms x̃i = Θdec(zi)
∈ R3ñ from the original fine-grained configuration xi ∈ R3n (see
Algorithm 1). The target atoms that are reconstructed using the
decoder need to be specified a priori. In practice, this requires
limited knowledge of the system. For the two model systems we con-
sider here, we designate the backbone as the set of target atoms to
reconstruct.

We model our encoder-decoder (Fig. 2) scheme after DiffPool,
a hierarchical graph pooling approach.13 Our encoder consists of a
single pooling layer, where we learn a fine-grained-configuration-
dependent projection matrix Pxi , such that zi = Θ(xi) = Pxi xi. Sim-
ilarly, the decoder consists of a single “inverse-pooling” layer,
where we learn a coarse-grained-configuration-dependent projec-
tion matrix, Pzi in order to reconstruct x̄i = Θdec(zi) = Pzi zi. Impor-
tantly, the encoder-decoder is state-dependent, ensuring it is consis-
tent with the coarse-graining framework we introduce in the main
text.

Here, Pxi = softmax(GNN(xi)) ∈ Rk×n and Pzi = GNN(xi)
∈ Rñ×k, where the softmax is computed row-wise to ensure that the

ALGORITHM 1. Encoder-decoder training.

1: Initialize encoder Θ and decoder Θdec and corresponding
optimizer and scheduler

2: for e = 0 . . . M do
3: if e < nfreeze_cg then
4: for t = 0 . . . ncg do
5: Compute LΘ and carry out optimization step of Θ
6: end for
7: (Re)-initialize Û and corresponding optimizer and

scheduler
8: end if
9: for t = 0 . . . nu do

10: Compute LÛ and carry out optimization step of Û
11: end for
12: end for

sum of all atomic contributions to each coarse-grained “bead” is 1.
The DiffPool scheme allows for any general message-passing GNN
architecture to be used; we use the E(n) − EGNN graph neural net-
work architecture, which imposes necessary rotational and physical
invariance constraints.41

Our loss function to train this encoder-decoder consists of
a reconstruction loss and a suite of auxiliary losses, which aid in
regularization,

LΘ = Lr + λ[Llink +Lent +Lassgn + λmfLmf], (B1)

where λ and λmf are hyperparameters controlling the weight of
the four auxiliary losses. The reconstruction loss Lr = ∥PzPxx − x̃∥2

2,
where Px and Pz are dependent on the initial fine-grained configu-
ration x and the coarse-grained configuration z = Pxx respectively.
In our implementation, we remove translational shifts before com-
puting the distance. Additionally, when computing Lr, we weigh all
backbone carbon and nitrogen atoms by αbb > 1 to ensure that these
atoms get reconstructed with a higher fidelity.

The link loss Llink = ∥D⊙ PT
x Px∥F

ensures that proximal atoms
are projected onto the same coarse-grained bead; here ∥ ⋅ ∥F denotes
the Frobenius norm and D ∈ Rn×n is the matrix of all pairwise dis-
tances between atoms of the fine-grained configuration x. (PT

x Px)i j
gives a measure of the overlap of the bead assignments between atom
i and atom j. We want atoms that have overlap in bead assigments
to correspond to atoms that are proximal and therefore have a lower
interatomic distance. The Frobenius norm of the Hadamard prod-
uct between PT

x Px and D penalizes assigning two atoms to the same
bead that have a large interatomic distance.

The entropy loss Lent = 1
k∑

k
i=1 H(Pi

x), where Pi
x the i-th row of

the projection matrix Px and H denotes the entropy function. This
loss ensures that the fractional weights of the atoms assigned to each
bead are concentrated around a few atoms.

The assignment loss Lassgn = diag (PT
x Px) ensures that an atom

is not assigned to multiple beads, where diag corresponds to the
sum of the diagonal entries of the matrix. If an atom is assigned to
multiple beads, PT

x Px will have diagonal entries greater than 1. The
Lassgn loss, therefore, penalizes the assignment of an atom to multiple
beads.

Finally, we elaborate on the mean-force loss Lmf below after a
brief discussion on the computation of the mean-force.

For the systems we explore here, we cannot easily compute
a coarse-grained potential energy function Û; instead, we learn Û
using force-matching.5,6 We match ∇zÛ to the mean force of a
coarse-grained configuration. The mean force formally is

F(z) = ⟨ΘF(∇xU(x))⟩Θ(x)=z , (B2)

where ΘF projects the fine-grained force ∇xU(x) into the coarse-
grained space.2 Computing this average exactly can be costly;
instead, we compute an estimate of the mean force using the
instantaneous coarse-grained force,61,62

Finst(z) = (PxPT
x )−1Px∇xU(x), (B3)

where z = Θ(x) = Pxx. With this estimate, we train Û by minimizing
the following loss:

LÛ = [−∇zÛ (z) − Finst(z)]2. (B4)
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The light blue term is the one in which gradients with respect to
the parameters are being tracked. We use the SchNet architecture to
represent Û.42 Briefly, SchNet transforms interbead distances in to
Gaussian basis functions with learnable parameters; these Gaussian
basis functions are then passed through multiple neural network lay-
ers. We assign each bead a unique input feature (0 . . . k), analogous
to an atomic number.

Finally, we use our coarse-grained potential energy Û to inform
the coarse-grained map Θ that we learn using Lmf,

Lmf = [−∇zÛ (z) − Finst(z)]2. (B5)

The light blue term is the one in which gradients with respect to
the parameters are being tracked. While, Lmf has the same form
as LÛ , in Eq. (B4) we fix our coarse-graining map and allow Û to
train. In Eq. (B5) on the other hand, we fix the coarse-grained poten-
tial energy function Û and instead allow our coarse-graining map
to vary. Using Û to inform Θ via Lmf reduces contributions from
atoms that increase the variance of the mean force estimate Finst(z),
an observation also made using a similar regularization term in
Ref. 7. Empirically, we observe that this results in a lower entropy
projection map. For the experiments included here, we are able to
learn a low-entropy map during the first epoch of training Θ, so
the inclusion of Lmf has limited practical utility for the systems
considered here.

APPENDIX C: COMPUTATIONAL DETAILS
FOR BACKMAPPING

In the coarse-graining scheme discussed in Appendix B, we
train an encoder-decoder that deterministically embeds a fine-
grained configuration xi into a coarse-grained configuration zi; the
coarse-grained configuration is then used to deterministically recon-
struct x̃i, which corresponds to a set of target atoms from the original
configuration. Of course, we cannot compute observables dependent
on the full fine-grained configuration using this approach. Here, we
describe the backmapping procedure used to generate fine-grained
configurations from a coarse-grained configuration p(x∣zi).

To simplify the backmapping process, we work with inter-
nal coordinates, namely bond lengths, bond angles and dihedral
angles. From a set of internal coordinates, the Cartesian coordi-
nates of each atom in the system can be easily computed. We use
a normalizing flow to generate internal coordinates conditioned on
a coarse-grained configuration. Normalizing flows are a class of
invertible neural networks that enable a transformation between two
distributions. Importantly, normalizing flows enable efficient and
exact density estimation.24

For the systems we consider here, the distributions of bond
angles and distances are unimodal Gaussian distributions with nar-
row variances. On the other hand, the distributions of dihedral
angles are generally multimodal with large variances. To simplify
the generative process, we set all bond angles and distances to be the
median of their respective distributions. Thus, we only consider the
task of generating dihedral angles ϕi = [ϕ0

i ,ϕ1
i . . .ϕm

i ] ∈ [−π,π]m.
To carry out the backmapping process, we first use the decoder

Θdec to transform zi into x̃i. We then compute ϕseed ∈ [−π,π]m̃ ,
the dihedral angles of x̃i. Finally, we use our trained normalizing
flow to sample a set of dihedral angles ϕi ∼ p(ϕ∣ϕseed). Using x̃i and

ϕi, we can easily generate xi, a configuration in the fine-grained
space. Thus, our backmapping procedure amounts to sampling
xi ∼ p(x∣zi).

In order to train our normalizing flow, we seek to learn a map
T∗ that transports the base distribution ρ, a multivariate Gaussian
distribution with mean zero and identity covariance, to the target
distribution ρ̃, the distribution of internal coordinates that corre-
spond to Boltzmann-distributed configurations. Denoting the map
represented by normalizing flow T,

T♯ρ(ϕ) = ρ(T̄(ϕ))∣∇ϕT̄∣, (C1)

where T̄ denotes the inverse map. In order to learn a map T that
approximates T∗ , we seek to minimize the forward Kullback-Leibler
Divergence, DKL(ρ̃∣T♯ρ ). The KL divergence, up to a constant, can
be estimated using the following loss function,

LNF = −
1
N

N

∑
i=1

log T♯ρ(ϕi), (C2)

where the exact density T ♯ ρ can be computed using Eq. (C1) and N
is the number of data points.

We use the rational-quadratic neural spline flow (RQ-NSF)
architecture to represent our normalizing flow.53 We make this
choice because the domain of dihedral angles is bounded to [−π,π]
and the RQ-NSF approach considers transformations between
bounded domains. Finally, within this architecture we use autore-
gressive layers to carry out the actual normalizing flow. Practically,
this amounts to using the first j dihedral angles, ϕ0: j−1, to inform the
generative process of ϕ j.

With RQ-NSF, we define a set of m neural networks
FCN0, FCN1, . . . , FCNm that are used in the transformation of
ϕ0,ϕ1, . . . ,ϕm, respectively. Each of these neural networks are fully
connected with a single hidden layer. Given a sample from the
base distribution ϕbi ∼ ρb, we can compute θ j

i = FCN j(ϕ0: j−1
i ,ϕseed).

Here, θ j
i correspond to the parameters of a rational quadratic

spline g. Finally, we can compute ϕ j
i = gθ j

i
(ϕ j

bi
). See Algorithm 2 for

a summary of the backmapping process. For a thorough description
of RQ-NSF, see Ref. 53.

There is a natural hierarchy to the backmapping procedure
here, where atoms that are a single bond away from the atoms in x̃
are reconstructed first with atoms further away being reconstructed
later. When carrying out the autoregressive flow, we remain faithful
to this hierarchy, ensuring that atoms reconstructed first influence
the internal coordinates of atoms reconstructed later.

ALGORITHM 2. Sampling x i from p(x∣zi).

1: Train FCN0, FCN1, . . . FCNm

2: Compute ϕseed from x̃i = Θdec(zi)
3: Sample ϕbi ∼ ρ
4: for j = 0 . . . m do
5: Compute θ j

i = FCN(ϕ0: j−1
i ,ϕseed)

6: Compute ϕ j
i = gθ j

i
(ϕ j

bi
)

7: end for
8: Reconstruct xi from x̃i and ϕi
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APPENDIX D: NUMERICAL EXPERIMENTS

As described in the main text, we carry out our coarse-graining
and backmapping procedures for two proteins: Alanine Dipeptide
and Chignolin. Here, we briefly expand on some of the experimen-
tal details used when investigating these systems, including a list of
hyperparameters used (see Tables I and II).

We selected the dimensionality of the coarse-grained space
(i.e., the number of coarse-grained) beads to balance the trade-off
between accelerating sampling and maintaining overlap of our gen-
erated distribution to our target distribution. We empirically deter-
mined the number of beads that could balance the trade-off for both
chignolin and alanine dipeptide (see Table I). For future systems, we
recommend an initial strategy that prioritizes rapid exploration. An
initial coarse-graining should be one that reduces the dimension-
ality significantly; if the reconstructed fine-grained configurations
have poor overlap with the target Boltzmann distribution, then we
recommend increasing the coarse-grained dimensionality.

During training, we use the ReduceLROnPlateau scheduler to
train Θ and Û. The scheduler is assigned a metric of interest and
it anneals the learning rate as this metric converges. For Θ, we use

TABLE II. Relevant hyperparameters for normalizing flow training.

Hyperparameters

Hyperparameter Chignolin Alanine dipeptide

RQ-NSF layers 2 2
Width 256 128
Optimizer Adam Adam
Learning rate 3 × 10−4 3 × 10−4

Number of datapoints 50 000 50 000
Batch size 128 64

the reconstruction loss Lr on the validation set as the metric for the
scheduler. For Û, we use the mean absolute error (MAE) between
∇Û(z) and Finst(z) on the validation set as the metric for the sched-
uler. For both Chignolin and Alanine Dipeptide, we use a 80/20
train-validation split.

TABLE I. Relevant hyperparameters for encoder-decoder (Θ −Θdec
) and Û training.

Hyperparameters

Hyperparameter Chignolin Alanine dipeptide
k (No. of beads) 30 6
n̄ (No. of target atoms) 40 13
αbb 5.0 2.0
Û optimizer Adam Adam
Û learning rate (LR) 3 × 10−4 3 × 10−4

Û scheduler ReduceLROnPlateau ReduceLROnPlateau
Û patience 5 5
Û factor 0.8 0.8
Û minimum LR 1 × 10−6 1 × 10−6

Û # of SchNet layers 2 2
Û width 128 128
Û cutoff (Å) 15 10
Û ngaussians 25 25
Θ optimizer Adam Adam
Θ learning rate (LR) 1 × 10−4 1 × 10−4

Θ scheduler ReduceLROnPlateau ReduceLROnPlateau
Θ patience 5 5
Θ factor 0.8 0.8
Θ minimum LR 1 × 10−6 1 × 10−6

Θ # of E(n) layers 2 2
Θ width 128 2
Θ nonbonded-edge cutoff (Å) 5 2
Λ 5.0 0.2
λmf 0.001 0.001
nfreeze_cg 2 5
ncg 15 10
nu 10 10
Batch size 8 8
Number of datapoints 50 000 50 000

J. Chem. Phys. 158, 124126 (2023); doi: 10.1063/5.0141888 158, 124126-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Alanine dipeptide. Projection matrices Px = Θ(x) computed for all fine-
grained configurations x in dataset. Mean Px (top) and variance Px (bottom).
Coarse-graining maps are essentially the same across all fine-grained configu-
rations in dataset and heavily weigh backbone atoms. Bead atoms are reindexed
for ease of visualization such that lower bead indices correspond to C-terminus
side and higher bead indices correspond to N-terminus.

We plot the mean and variance of all the projection matrices
computed for each configuration in our dataset for alanine dipeptide
(Fig. 9) and chignolin (Fig. 10). For each of the systems we investi-
gate here, the projection matrices learned are essentially the same
across for all the configurations in dataset. Importantly, the learned
coarse-graining map corresponds to a physically meaningful map,
where backbone atoms (C, Cα, N) are given a high weight, with side
chain atoms given a zero weight. The conformational dynamics of
the two proteins we investigate are dominated by backbone behavior
and the coarse-graining maps we use respect this behavior. For more
complex biomolecular systems and/or for a coarse-graining aimed
at a greater dimensionality reduction, the coarse-graining map will

FIG. 10. Chignolin. Projection matrices Px = Θ(x) computed for all fine-grained
configuration x in dataset. Mean Px (top) and variance Px (bottom). Coarse-
graining maps are essentially the same across all fine-grained configurations in
dataset and heavily weigh backbone atoms. Bead atoms are reindexed for ease
of visualization such that lower bead indices correspond to C-terminus side and
higher bead indices correspond to N-terminus.

be less physically obvious. We anticipate the approach we introduce
here will remain robust to these potential challenges.

APPENDIX E: COARSE-GRAINED SIMULATIONS

Given a trained coarse-grained potential function Û, we can
sample the coarse-grained space via standard Langevin dynamics.
We carry out dynamics using an “OVRVO” integration scheme.63

We use the OpenMM64 simulation platform to carry out all coarse-
grained simulations. Finally, we use the TorchForce plugin to
interface our coarse-grained potential energy function Û into the
simulation.

Given a vector m = [m1, m2, . . . , mn] consisting of all the
masses of the atoms in the fine-grained configuration, we define the
mass of a bead to be m⟨Px⟩TD , where ⟨Px⟩D is the average projection
matrix across all configurations in our dataset D. For the coarse-
graining maps we learn, our projection matrices are essentially the
same across all fine-grained configuration in D, so this approach
is a sensible one. For systems with more complex coarse-graining
maps, a different strategy to account for masses will likely be
necessary.

For alanine dipeptide, we ran 15 coarse-grained trajecto-
ries each for a total of 2 000 000 steps. We used a time step of
dt = 0.0001 ps and friction coefficient γ = 100 ps−1. These trajecto-
ries were initialized at positions across the free-energy landscape to
ensure sufficient coverage. We subsample a total of 20 000 coarse-
grained configurations and for each configurations, we generate
2000 fine-grained configurations for a total of 4 × 107 fine-grained
configurations. Finally, we carry out a reweighting step followed by
a relaxation step detailed below.

For chignolin, we initially ran 24 trajectories each for a total
of 2 000 000 steps. For these trajectories, we used a time step of
dt = 0.001 ps and friction coefficient γ = 100 ps−1. We started 8
of these trajectories in the first basin (unfolded state), 8 of these
trajectories in the second basin (folded state), and 8 of these tra-
jectories in the third basin (misfolded state). When carrying out
the backmapping process, we observed that trajectories that started
in the misfolded state quickly transitioned to one of the other
2 basins, resulting in limited sampling of the misfolded state. To
alleviate this, we ran three more trajectories starting in this basin
with a dt = 0.000 01 ps and friction coefficient γ = 100 ps−1, also
of length 2 000 000 steps. From these 27 trajectories, we backmap
54 000 coarse-grained configurations and generate 750 fine-grained
configuration per coarse-grained configuration. Finally, we carry
out a relaxation step followed by a reweighting step detailed
below.

APPENDIX F: REWEIGHTING PROCEDURE

We sample from the Boltzmann distribution via a sampling
scheme that combines coarse-grained dynamics with a backmap-
ping procedure that utilizes a normalizing flow. There is no the-
oretical guarantee that this sampling scheme allows us to sample
from the true Boltzmann distribution; instead, we must carry out a
final reweighting to ensure that samples are appropriately weighted.
Below, we highlight two different reweighting procedures, one that
explicitly uses p(z) and p(x∣z) the other that implicitly accounts for
it. To limit the computational burden, all energies are computed via
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an implicit model using OpenMM. In addition, we carry out a short
relaxation procedure of overdamped Brownian dynamics—again
using an implicit model—in order to relax any minor structural
deformities and ensure configurations are reflective of ambient
temperature.

1. Alanine dipeptide
Given a fine-grained configuration xj backmapped from

a coarse-grained configuration zi [i.e., xj ∼ p(x∣zi)], we
weigh each configuration according to wij/∑ij(wij), where

wi j = exp (−βUimplicit(x j))
exp (−βÛ(zi))∗p(x j ∣zi) . The sum is taken over all fine-grained

configurations xj backmapped from all coarse-grained configura-
tions zi. Finally, we carry out a single relaxation step of overdamped
Brownian dynamics with a time-step of 0.000 02 ps and friction
coefficient γ = 10 ps−1. The time-step we use for this relaxation is
200× lower than the time-step used to carry out the original MD
simulation.

2. Chignolin
For chignolin, the fine-grained structures we backmap are gen-

erally high-energy configurations; however, this was generally a
result of minor structural deformities as opposed to major flaws
in the reconstruction procedure. Because of this high-energy, we
cannot carry out the same reweighting procedure we used with
alanine dipeptide. However, we do have access to the distribu-
tion of potential energies—recomputed using an implicit solvent
model—of the configurations in our MD-dataset, which we reweight
with respect to. First, we carry out 300 steps of overdamped Brow-
nian dynamics with a time-step of 0.00002 ps and friction coef-
ficient γ = 10 ps−1 in order to relax the structure to a reasonable
energy.

Then, we reweight the distribution of potential energies from
our relaxed configurations with respect to distribution of poten-
tial energies from our MD dataset. Given a histogram binning
function h : R→ [0, 1] that computes the probability of the bin
a potential energy belongs to, we assign to each fine-grained
configuration xj backmapped from a coarse-grained configuration

a weight wij/∑ij(wij), where wi j = hMD(Uimplicit(x j)
hgen(Uimplicit(x j) .

APPENDIX G: DATASETS

We carried out a simulation of alanine dipeptide in explicit sol-
vent at a temperature of 300 K with the AMBER ff99SB force field
and the TIP3P water model. We used a time-step of 0.004 ps and
a friction coefficient of γ = 0.1 ps−1. The total simulation time was
over 0.5 μs. Finally, we saved the configurations every 1 ps for a
dataset of over 500 000 points. From this dataset, we subsampled
50 000 data points consisting of positions and forces, which were
then used for training.

We used the dataset of chignolin trajectories from Ref. 9. See
supplement in Ref. 9 for simulation details. From this dataset, we
similarly subsampled 50 000 data points consisting of positions and
forces to carry out our training.

APPENDIX H: WEAK THERMODYNAMIC
CONSISTENCY

In this appendix, we state and prove the proposition stated in
the main text. Throughout, simply for notational clarity, we assume
that U and Û are shifted so that the normalization constants are
unity. In this section, the parameters of Û are assumed to be fixed
at an optimal value, so we suppress them for notational clarity. In
what follows: the map M can be viewed as a map from R3n → R3ñ ,
which is the dimensionality of the space after use of the decoder.

Definition H.1. An invertible coarse-graining is a tuple
(M, Û, T) consisting of coarse-graining map M : R3n → R3k, a
coarse-grained potential Û : R3k → R, and a normalizing flow T :
R3n → R3n.

Definition H.2. A projective coarse-graining is a pair (M, Û)
consisting of a coarse-graining map M : R3n → R3k and a coarse-
grained potential Û : R3k → R.

Definition H.3. We call a projective coarse-graining (M, Û)
thermodynamically consistent if

Û(z) = −β−1 log∫ δ(M(x) − z)e−βU(x)dx. (H1)

Proposition H.4. Let (M, Û, T) be an invertible coarse-
graining. Let F∗ denote the set of functions of continuous, bounded
functions,

F∗ ∶= { f ∈ C(R3n,R)∣ f = f̂ ○M, f̂ ∈ C(R3k,R)},

If (M, Û, T) is F∗ thermodynamically consistent, then the projective
coarse-graining (M, Û) is thermodynamically consistent in the sense
of Ref. 2.

We define the set F∗ so that it includes only functions that
can be written as a composition of a function f̂ on the coarse-
grained configuration with the coarse-graining map. A bigger set
of functions, for example all bounded continuous functions, would
yield the same result, but includes many observables on the fine-
grained space that project trivially. The proof of this proposition
is straightforward; we simply use F∗ weak thermodynamic con-
sistency in the fine-grained space and project. The assumption we
make is that the degrees of freedom orthogonal to M(x) do not
affect the value of the output of functions in F∗. First, let f ∈ F∗.
By assumption,

⟨ f ⟩ = ∫ f (x)e−βU(x)dx = ∫ f (x)pinv(x∣z)e−βÛ (z)dzdx, (H2)

so, in particular, for any bounded, continuous f̂ : R3k → R,

∫ f̂ (M(x))e−βU(x)dx = ∫ f̂ (M(x))pinv(x∣z)e−βÛ (z)dzdx

= ∫ f̂ (z)e−βÛ (z)dz, (H3)

which follows from the normalization of pinv. The equality obtained
here is the weak form of Definition H.3. To obtain pointwise con-
vergence, we construct a sequence of Gaussian distributions cen-
tered at each z that approach a δ-function. Note that we do not
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prove that F∗ is the minimal set of functions yielding thermo-
dynamic consistency for (M, Û), though we believe that this is
the case.
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