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The adaptive and surprising emergent properties of biological materials self-assembled
in far-from-equilibrium environments serve as an inspiration for efforts to design
nanomaterials. In particular, controlling the conditions of self-assembly can modulate
material properties, but there is no systematic understanding of either how to
parameterize external control or how controllable a given material can be. Here,
we demonstrate that branched actin networks can be encoded with metamaterial
properties by dynamically controlling the applied force under which they grow and
that the protocols can be selected using multi-task reinforcement learning. These
actin networks have tunable responses over a large dynamic range depending on the
chosen external protocol, providing a pathway to encoding “memory” within these
structures. Interestingly, we obtain a bound that relates the dissipation rate and the
rate of “encoding” that gives insight into the constraints on control—both physical
and information theoretical. Taken together, these results emphasize the utility and
necessity of nonequilibrium control for designing self-assembled nanostructures.

actin | reinforcement learning | nonequilibrium statistical mechanics | fluctuation theorem

Biomolecular materials spontaneously self-assemble in fluctuating, nonequilibrium
environments. Despite the complex environment, many cellular assemblies possess a
remarkable capacity for adaptation and dynamism (1–5). In contrast, our ability to
design materials with nanoscale components remains primitive in comparison with the
intricate, hierarchical structures that reliably assemble in living systems (6). The strategies
employed by biological self-assembly thus offer a unique lens into the limits of control
for synthetic efforts to engineer nanoscale metamaterials.

Cytoskeletal networks are perhaps the most illustrative example of the dramatic effects
of assembly dynamics on resulting material properties (7, 8). The key structural proteins
that form this scaffolding of the cell must rapidly rearrange to drive fundamental processes
such as motility (9) and signaling (3, 10). The remarkable material properties and
dynamical assembly of branched actin networks, which self-organize through the interplay
between numerous proteins and external forces from the environment, have attracted
significant experimental and theoretical scrutiny. The components of these dynamic
networks have been purified, and reconstituted systems have been studied extensively (8,
11–14), yielding detailed insight into their nonequilibrium dynamics.

Atomistic simulations and experimental studies have provided insight into the
molecular mechanisms of actin polymerization and allostery (15), branching (16), and
plasticity (17). In silico studies of mesoscale material properties of cytoskeletal networks
have, on the other hand, relied heavily on minimal models (8, 18, 19), that represent
the network of actin filaments as elastic networks with filaments that resist bending and
stretching. For example, randomly assembled networks have been shown to recapitulate
interaction with the membrane (20) and myosin-induced contraction (18, 19). Similarly,
interesting dynamical behaviors like treadmilling (21) as well as aster formation and
sorting in actin–myosin networks (22, 23) have been captured accurately with simple
models. Higher-resolution reaction–diffusion models have also been used to investigate
the thermodynamics of actin network growth and phenomena such as cytoquakes
(24, 25). Floyd et al. (26), in particular, introduced a systematic scheme for computing
dissipation in actomyosin networks and showed that chemical energy is more efficiently
stored in dense networks. The aforementioned works show the utility and predictive
power of a minimal modeling approach, and we follow suit. We develop a model that
closely resembles the experimental geometry of a recent study that images branched actin
network growth under load (11, 14).

We show here that the model we have developed captures the essential behavior of actin
network growth under varying external loads and, additionally, we show how to control
that behavior to tune the response properties of the resulting material. We demonstrate,

Significance

Building new materials from
biological components with exotic
and controllable properties
requires strategies to assemble
these components into nontrivial
structures. Cytoskeletal
proteins—which transduce
force—give structure to a cell,
help it move, and enable it to
adapt dynamically to growth
conditions, resulting in materials
with a long-lived memory of how
they were built. Based on recent
experiments, we develop a
minimal model of actin assembly
under load and we show how
reinforcement learning
techniques can be employed to
control the growth of actin
networks to make structures that
have properties distinct from
those that arise in the biological
context. We also show that this
controlled self-organization is
constrained by a fundamental
thermodynamic limit on the rate
of controllability.

Author affiliations: aDepartment of Chemistry, Stanford
University, Stanford, CA 94305; and bInstitute for
Computational and Mathematical Engineering, Stanford
University, Stanford, CA 94305

Author contributions: S.C., S.K.M., and G.M.R. designed
research; S.C., S.K.M., F.H., and G.M.R. performed
research; S.C., S.K.M., F.H., and G.M.R. analyzed data; and
S.C., S.K.M., and G.M.R. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
rotskoff@stanford.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2310238121/-/DCSupplemental.

Published February 15, 2024.

PNAS 2024 Vol. 121 No. 8 e2310238121 https://doi.org/10.1073/pnas.2310238121 1 of 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 S
T

A
N

FO
R

D
 U

N
IV

E
R

SI
T

Y
 o

n 
Fe

br
ua

ry
 1

8,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

13
2.

17
4.

25
1.

2.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2310238121&domain=pdf&date_stamp=2024-02-08
https://orcid.org/0000-0002-4750-8923
https://orcid.org/0000-0002-7772-5179
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rotskoff@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310238121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2310238121/-/DCSupplemental


in particular, that an external feedback protocol that dynamically
modulates the growth conditions encodes a nonequilibrium
memory of the growth conditions in the material. The deviation
from a homogeneous density profile of the molecular components
leads to distinctive metamaterial properties (5), but driving the
system externally to push it toward a target structure incurs a dis-
sipative encoding cost, which, at its core, is a consequence of the
second law of thermodynamics; we compute and analyze this cost
below. Using reinforcement learning (RL), we optimize external,
nonequilibrium protocols that drive the resulting networks into
regimes inaccessible to uncontrolled assemblies. We further show
that the resulting networks have elastic coefficients that depend
strongly on the applied force.

Encoding Material Properties with
Nonequilibrium Growth Dynamics
Mechanical response in soft materials is dictated by both intrinsic
material properties of the constituents and also their spatial
organization (27, 28). When the individual components of a
structure can be manipulated in a spatially localized fashion,
exquisitely precise control of the resulting material is sometimes
possible (27, 29). However, in many materials, we can only
reconfigure a fixed set of components into distinct topologies.
This motivates an exploration of the possibility of controlling
mechanical response without manipulating the components
themselves or their intermolecular interaction energy. For ex-
ample, the reorganization of fixed components in a network has
been used to control global response by systematically removing
a small set of bonds from disordered networks of springs (5, 30).

Making metamaterials by manipulating a few degrees of
freedom in a complex network indeed demonstrates the profound
sensitivity of mechanical properties on spatial organization.
However, in nanoscale systems self-assembled by stochastic
dynamics, surgical reconfiguration is not possible experimentally.
Nevertheless, many biomolecular materials have adaptive proper-
ties that evince memory of their growth conditions (4, 5, 31, 32),
which are ultimately nonequilibrium, kinetic effects. Perhaps the
most direct example of this behavior is the force-induced stress
stiffening in branched actin networks (12, 13, 24, 33) which
can be reversibly saturated to the point of softening (34). When
grown under high load forces, actin networks become more rigid
than networks assembled in the absence of an applied force,
despite consisting of exactly the same protein components.

The metamaterials that assemble under the external control
described below retain information about their growth process.
Many works investigating memory in nonequilibrium systems
assume the existence of a Hamiltonian with multiple metastable
states and instead examine the retrieval of specific states in this
memory landscape (35, 36). However, the physical processes
that use dissipative driving to encode metastability have not
been analyzed in detail. Here, we examine the thermodynamic
constraints on this class of dissipative processes and generalize this
notion to non-Hamiltonian systems. This analysis emphasizes an
intuitive trade-off between the extent of a perturbation, which we
quantify through a measure of the deviation of a configurational
distribution away from its steady state, and dissipation as the
system undergoes controlled dynamics.

Consider an encoding process that transforms a system
from some initial steady-state �ss at t = 0 to some new
distribution �� at t = �, driven by a nonequilibrium feedback-
dependent protocol. Using the detailed information fluctuation
theorem (37–39), we can relate the log ratio of the path measures
of a controlled trajectory and its time-reversal

log
P[xt ,mt ]

P̃[x̃t , m̃t ]
= −�Q(xt ,mt) + ΔSsys + I(xt ;mt), [1]

where I(xt ;mt) denotes the trajectory-wise information between
the trajectory xt and the measurement sequence mt , Q denotes
the heat along the trajectory, ΔSsys denotes the change in system
entropy from �ss to �� , and ·̃ denotes a time-reversed quantity.
While this result was originally discussed in the context of
transformations starting from an equilibrium distribution (38),
this assumption is not needed for Eq. 1 (39).

Furthermore, averaging over trajectories, using the second
law of thermodynamics, and by employing the data-processing
inequality (SI Appendix), we get

DKL(�ss||��) ≤ −� 〈Q〉+ ΔSsys + I(xt ;mt), [2]

where I [xt ;mt ] is the mutual information between xt and mt
and the brackets 〈·〉 denotes an average over trajectories. We
note here that the information term vanishes when there is no
feedback in the protocol. The KL divergence between the initial
stationary distribution, �ss, and the distribution resulting from
the controlled dynamics, �� , directly measures the deviation from
stationarity and hence provides a useful quantification of how
much the configurational distribution has been altered by the
external protocol.

Interestingly, the rate of memory encoding satisfies a universal
“speed-limit.” Because the total heat flow out of the system is time
extensive, it is more useful to consider the time derivative of Eq. 2,

∂tDKL(�ss||��) ≤ ∂tSsys(��) + 〈�env〉+ İ(xt ;mt), [3]

where �env is the rate of entropy production in the medium. In
this work, we do not attempt to minimize the rate of dissipation
in the medium, meaning that this upper bound will likely be
quantitatively uninformative, though the terms in this bound do
provide qualitative insight into the relationship between entropy
production and structural changes in the networks (SI Appendix,
Fig. S6). Minimizing dissipation in nonequilibrium transforma-
tions is an active area of research (40–43), and we anticipate that
exploring the bound Eq. 2 in the context of minimum dissipation
protocols will prove a fruitful setting to explore this result.

The interpretation of this speed limit Eq. 3 is straightforward:
The rate at which the system can be driven to deviate from its
steady-state behavior requires either a positive rate of dissipation
of heat to the reservoir or a positive quantity of information must
be extracted from the measurement sequence at each point in
time. Bounds similar to Eq. 3 have appeared without the feedback
term to quantify the cost to maintain a steady state (44, 45) and
as a constraint on number fluctuations in self-assembled lattice
gases (46). In the special case of an equilibrium target steady-
state, this bound can be saturated because there is no steady-state
entropy production; note that if the target process is dissipative
in the steady state, this upper bound may not be tight. While this
upper bound may provide only a weak constraint in some cases,
we observe that changes in the quantities that make up the bound
are still physically and mechanistically informative, as discussed
immediately below.

The entropy production rate, information acquisition rate,
and the time derivative of the KL-divergence for actin networks
grown under feedback protocols are plotted as a function of
protocol duration in SI Appendix, Figs. S5–S7. We observe
that growing networks with metamaterial-like properties often
leads to dramatic changes in the rate of dissipation. The layered
networks interestingly compensate changes in the dissipation
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rate with an opposite change in the information acquisition
rate; while the rate of information acquisition is an order of
magnitude lower than the steady-state dissipation rates, both
are clearly strongly correlated with structural changes in the
network. Finally, as mentioned above, we note that the rate
of change of KL divergence is several orders of magnitude below
the sum of the dissipation rate and the information acquisition
rate demonstrating that our control framework exists in a regime
far from saturation of the speed limit. This last point is not
a surprising one; our protocol optimization strategy does not
explicitly account for any thermodynamic costs, and furthermore,
we are targeting highly dissipative nonequilibrium steady states.
This is similar to what has been observed with the thermodynamic
uncertainty relations (47, 48), where current fluctuations often
provide only a weak upper bound on dissipation rates when
there is not tight coupling between the observed current and
dissipation (49). Strategies for determining protocols that are
minimally dissipative (42) could serve as a useful framework for
learning protocols that saturate the bound in Eq. 3.

The general thermodynamic constraint Eq. 3 implies that a
finite dissipation rate is required to encode new properties in
a material. Indeed, the large range of elasticities observed in
branched actin networks that result only from changing the
growth conditions raises an important general question: How
tunable is response with a given material assuming that a dissi-
pative, feedback protocol is used to control assembly? Here, we
seek to answer this question using a minimal model of branched
actin networks, described in detail in the following sections.
This model provides an attractive platform for our investigation
because this system can be reconstituted using purified proteins
and the growth conditions can be directly manipulated using
the cantilever arm of an atomic force microscope, as depicted
in Fig. 1. Our model captures the essential physical features
of recent experiments reported in ref. 14 and, because they
work with a fixed set of pure protein components, ambiguities
related to cellular regulation of protein expression and other
nontrivial side effects of biology can be systematically excluded,
allowing us to focus on the underlying physical mechanisms of
control.

Obtaining a metamaterial by modulating growth conditions
requires external control, and the primary experimentally accessi-
ble control variable in this system is the applied force as a function
of time. Throughout, we consider a setting where the controller
interacts with the material, allowing both measurement and
feedback, which is a feature of the biological systems and could
also be tractable experimentally with appropriate microscopy.
Directly tuning elastic coefficients with a feedback protocol is

not straightforward because this global property depends on
the network structure in a complicated and nonlinear fashion.
External growth forces do, however, directly impact the local
density at the growth front, which in turn is strongly connected
to the response. Throughout, we study the emergent properties
of a fixed, final network at the end of its growth trajectory.

Minimal Model of Actin Growth under External
Load
A Brownian ratchet has long been speculated as the mech-
anism through which external force impacts growth in actin
networks (21, 50–53). The experiments of Li et al. (14) lend
additional support to the Brownian ratchet model by imaging
components of the assembly during growth. This set of experi-
ments uses the cantilever arm of an atomic force microscope to
precisely apply force to the network in the direction of its growth.
A similar experimental setup was previously used to elucidate
stress-stiffening and stress-softening in networks growing under
large loads and stress-dependent growth dynamics (11, 12, 34).
These experiments provide fundamental insight into the nature
of branched actin network assembly, and in particular, they
highlight the delicate balance between polymerization, capping,
and additional branching near nucleation-promoting factors.
Additionally, these reconstitution experiments highlight the
strong dependence of material properties on growth conditions,
even in the absence of biological stimuli.

Because these experiments contain precisely controlled sets of
ingredients, we sought to assess if the experimental findings were
consistent with a minimalist model of polymerization against a
ratchet-like load. The model we develop is partially inspired by
and shares many features with those in refs. 54–56. These two-
dimensional (2D) models provide useful qualitative insight into
the dynamics of self-organization in branched actin networks in
the lamellipodium. The network growth involves the interplay
between ATP-dependent polymerization, Arp2/3-mediated
branching of the network, and quasi-irreversible capping of the
growing barbed-ends of individual filaments. These reactions all
have experimentally measured rates, and the physical properties
of individual actin filaments have been extensively characterized
at the single molecule level (SI Appendix, Table S1). Remarkably,
a Gillespie model that incorporates only these experimentally
known parameters predicts emergent, network-level properties
that are consistent with experimental results. While the experi-
mental analogue of the actin networks we consider are three-
dimensional, we find, as shown below, that a 2D model is
sufficient to explain the experimentally observed behavior.

A B

Fig. 1. External control of actin network enables design of actin-based metamaterials. (A) A schematic overview of branched actin networks growing against
a barrier, where individual filaments can polymerize, depolymerize, branch (via Arp2/3), or be capped. Network growth can be controlled by modulating load
force F . (B) Actin networks grown with layered density profiles (Top Right and Bottom Left) have heterogeneous responses, while networks grown with constant
density profiles (Top Left and Bottom Right) have more homogeneous responses.
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Our model geometry closely mimics the experimental setup
described in ref. 14. As depicted in Fig. 1, actin elongation
occurs homogeneously throughout the network with a rate k+actin.
Biologically, actin growth is biased toward the plus end (3),
but the experimental setup that we compare most directly with
includes only profilin-bound actin which exclusively binds the
plus end; that is, no minus-end growth occurs in our model.
Polymerization is balanced by a reverse reaction in which actin
spontaneously unbinds from existing filaments with a rate k−actin.
The imbalance in the forward and reverse growth rates leads to
a steady-state positive growth velocity. For actin and all other
components of the network, we fix the chemical potential and
assume there is sufficient excess of protein that depletion effects
can be neglected.

Near the barrier, nucleation-promoting factors encourage
branching of actin filaments via binding of the protein com-
plex Arp2/3 (14). We do not explicitly represent nucleation-
promoting factors but capture this proximity effect by allowing
Arp2/3 to bind to filaments within 10`actin of the barrier, where
`actin denotes the diameter of an actin monomer. Interactions
between the growing end of an actin filament and nucleation-
promoting factors can disrupt branching (14), so we mollify the
rate of branching based on the barbed end density near the growth
front. Explicitly, the branching propensity is given by

rbranching = k+Arp2/3nArp2/3 binding sites

× neff Arp2/3[Arp2/3 Monomers],
[4]

where nfree is the number of free barbed ends,

neff Arp2/3 = max
(
0, nNPF − nfree

)
, [5]

and nNPF is a fixed constant.
The elongation of an individual actin filament can be halted

by the so-called capping protein, which binds free barbed ends
with high affinity. When a filament binds capping protein, an
event that is considered irreversible in our model, it no longer
polymerizes or depolymerizes. The only constraint on capping,
which occurs homogeneously throughout the network, is steric
hindrance with the barrier.

Indeed, sterics dictate the overall growth trajectory of the net-
work via the constraint imposed by the rigid barrier depicted in
Fig. 1. The Brownian ratchet picture of actin growth under load
asserts that polymerization spontaneously occurs as the barrier
fluctuates away from the growth front. In our model, diffusion
of the barrier under an applied load is reflected at the point
of maximum height of the network. The transition probability
density for such a reflected diffusion can be solved analytically
(SI Appendix, Eq. S12), meaning that we can propagate the
position of the barrier simply by sampling conditionally on time
after a reaction occurs.

Fig. 2 illustrates the model branched actin network growth
under a step-wise increasing load force, which is in reliable
qualitative agreement with experimental observations (14). First,
under an increasing load, the growth velocity of the actin network
decreases. This is primarily a consequence of the increased steric
hindrance between the barrier; under higher loads, fluctuations
in the barrier that enable polymerization are less likely. Second,
the density of the materials near the growth front increases. To
enable comparisons with experimental observables, we consider
a region of interest within 100 nm of the growth-front, a region
comparable to the imaging depth afforded by total internal
reflection fluorescence microscopy (57). The reduction in growth

A

B

C

D

Fig. 2. Average network height, growth velocity, densities of constituent
materials, and reaction propensities for 200 actin networks grown under
increasing growth loads normalized by f0 (SI Appendix, Table S1). Under
increasing loads (Bottom panel), (A) network height increases with (B) a
reduced growth velocity, (C) density of actin monomers, capping protein,
and Arp2/3 within 100-nm increases, and (D) reaction propensity of capping
and branching decreases but remains balanced.

velocity of the network under an increased load will result in a
larger number of uncapped filaments near the growth front of the
network, inducing further capping and branching events, result-
ing in increased densities of actin monomers, capping proteins,
and Arp2/3 complexes within this region. Third, we observe that
the reaction propensities for branching and capping are balanced
across different loads, with both propensities eventually decreas-
ing under an increased load. In this setting, the increased number
of free barbed ends interferes with branching events, while the
increase in steric hindrance restricts capping of filaments.

Directing Self-Assembly of Actin Structures
The load-induced stiffening by the external load force on a
growing actin network suggests the possibility of engineering
actin-based metamaterials. The spatial organization of the actin
network depends strongly on the load history (12), and fur-
thermore, there is a strong coupling between the response of
a network and its spatial organization. Previous work (45) has
shown that RL offers a robust, yet straightforward framework
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for nonequilibrium control, when the tunable parameters are
extrinsic, such as experimental control variables. Following the
approach detailed in ref. 45, we devise a multi-task RL strategy
(SI Appendix) which allows us to spatially tune the network
densities and elicit material responses distinct from those available
to homogeneous networks.

The response of actin networks grown under a fixed protocol
exhibits high variance, limiting protocol-optimization strategies
that directly seek to target a particular response. However,
determining protocols that control the density of the network
allows us to assemble actin networks in a targeted way because the
response of a network is tightly coupled to density. In practice, we
can only reasonably control the growth front of the actin network
as filaments that are not proximal to the barrier are quickly
capped, and filament branching requires nucleation promoting
factors, which are implicitly present on the barrier. Therefore,
we can only regulate branching events on monomers proximal
to the barrier. With this in mind, we use RL to design external
control protocols that produce specific growth front densities of a
network. Here, we define the growth-front density as the density
of actin monomers within 10`actin of the barrier.

We consider a discrete set of external loads (SI Appendix,
Table S2) to limit potential experimental challenges of applying
load forces with arbitrary resolution. We then train external
controllers that can, in a feedback fashion, modulate the external
load to achieve a desired density. In Fig. 3, we detail trajectories
of protocols to grow layered networks with a low-density, soft,

A

B

Fig. 3. Protocols and growth front density as a function of time for 200
networks grown to a target layered structure with feedback protocols, where
external load is normalized by f0 (SI Appendix, Table S1). The ensemble of
state-dependent control protocols (A) enable realization of target growth-
front density (B).

A

B

Fig. 4. Actin networks targeted to different densities demonstrate diverse
responses. Note that 200 networks were grown to target growth-front
monomeric densities (1 to 5), and layered networks were grown with two
layers of different growth-front densities (1 → 5 and 5 → 1). (A) The
distribution of the eigenvalues for the mass-normalized stiffness matrix (SI
Appendix, Eqs. S20–S28) is right-shifted under increasing density, with layered
densities displaying intermediate distributions. (B) The response function—
normalized by the number of nodes—R(!) SI Appendix, Eq.S32 is higher under
increasing density with layered densities displaying intermediate responses.

foundation and a high-density, stiff, growth-front. The protocols
to grow target layered structures are nondeterministic; depending
on the current state of the system, different loads are required to
maintain a particular density and to transition between different
densities. Importantly, we are able to target network densities
with high fidelity.

Next, we consider the response properties of actin networks to
time-periodic forces. We grow networks targeted to different
densities, both uniform and layered (Fig. 4). For uniform
networks, we observe that the distribution of eigenvalues of the
mass-normalized stiffness matrix (SI Appendix) is right-shifted
under increasing density. Actin networks grown to a higher
density will have a larger number of smaller filaments, resulting
in higher natural frequencies of the network in comparison
to networks with lower density. We further compute the
corresponding response functions R(!) (SI Appendix), which
we normalize by the number of nodes. Similarly, for uniform
networks, we observe that the denser networks have a higher
response as perturbations can more easily be distributed.

Interestingly, we can engineer spatially tuned responses by
growing networks with heterogeneous density profiles. We target
networks with a low-density foundation and a high-density
growth-front (1 → 5) and a high-density foundation with a
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Fig. 5. Differences in the density of states between inhomogeneous net-
works and homogeneous networks. The layered networks respond to per-
turbations with a profile distinct from those of any homogeneous network.
Compared to the ensemble of sparse networks, the layered networks have a
suppressed response at low frequencies and an enhanced response at higher
frequencies. Compared to the ensemble of dense networks, the layered
networks have an enhanced response at low frequencies and a suppressed
response at higher frequencies. These plots indicate the layer networks mix,
albeit in a complicated way, the properties of the low-density and high-density
actin networks.

low-density growth-front (5 → 1). We see that the overall
response of these layered networks exhibits an intermediate
response in comparison to other uniform networks. The response
of each node depends strongly on its local environment and
the nearby density (Fig. 1B). At frequency ! = 0.5, the
denser regions have higher responses, while sparser regions of
the network have lower responses (Fig. 5). That is, the emergent
metamaterial modality of these networks results directly from
targeted control of the growth density.

Opportunities for Nonequilibrium Control
Nonequilibrium protocol design provides a compelling route to
expanding the capabilities to control and construct nanoscale

metamaterials, especially in contexts where modifying the
energetic interactions among components is impossible. Here, we
take inspiration from reconstitution experiments of dynamically
assembling branched actin networks (14) and demonstrate that
targeting distinct metamaterial properties is possible without
altering the underlying components, just by modulating an
external control variable with a feedback protocol. We also
show (Eq. 3) that the entropy production rate and information
acquisition rate provide insight into the rate at which we can
alter the configurational distribution of a desired material, as
discussed in detail in SI Appendix. Such fundamental limits shed
light on the necessary energetic costs of control, but further
investigation of such bounds is required to extract practical design
principles for controlling fluctuating materials. The bounds we
have derived will provide tighter constraints on control in settings
where minimizing dissipation is also an objective (58), a topic we
plan to investigate in future work.

The RL control framework we introduce here can readily be
extended to an experimental setting, even one without mecha-
nisms for feedback. RL has proved to be flexible and useful toolkit
for controlling physical (59) and biomolecular systems (45, 60)
evolving under stochastic dynamics. Recent works (61, 62) have
also made it increasingly apparent that controlling the kinetics
and dynamical pathways of self-assembly expands the scope
of control beyond engineering a thermodynamic ground state.
Furthermore, the computational and theoretical frameworks we
develop motivate a more systematic study into trade-offs between
information acquisition, dissipated heat, and the control of a
system toward a target state divergent from a nonequilibrium
steady state.

Data, Materials, and Software Availability. All code for this project is
available on GitHub at the following URL, including scripts and instructions
for generating all plots: https://github.com/rotskoff-group/actin-control (63).
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